Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Self-healing’ house in Greece will dare to defy nature

03.04.2007
A high-tech villa designed to resist earthquakes by ‘self-healing’ cracks in its own walls and monitoring vibrations through an intelligent sensor network will be built on a Greek mountainside.

The University of Leeds’ NanoManufacturing Institute (NMI) will play a crucial role in the £9.5 million European Union-funded project by developing special walls for the house that contain nano polymer particles - these will turn into a liquid when squeezed under pressure, flow into the cracks, and then harden to form a solid material.

NMI chief executive Professor Terry Wilkins said: “What we’re trying to achieve here is very exciting; we’re looking to use polymers in much tougher situations than ever before on a larger scale.”

Nanotechnology involves making things with useful scientific properties on a tiny scale - less than one-hundred thousandth the width of a human hair.

The house walls will be built from novel load bearing steel frames and high-strength gypsum board. But they will be unique for another reason too - they’ll contain wireless, battery-less sensors and Leeds-designed radio frequency identity tags that collect vast amounts of data about the building over time, such as any stresses and vibrations, temperature, humidity and gas levels.

“If there are any problems, the intelligent sensor network will alert residents straightaway so they have time to escape,” added Professor Wilkins.

The Leeds team also includes Dr Roger Gregory, chairman of University spinout company Instrumentel Ltd, who said: “Leeds are world leaders in designing wireless networks for extreme environments and hard-to-access places. Even if the building totally collapsed, the sensors would still let you pinpoint the source of the fault.”

Instrumentel will work in partnership with Dr Greg Horler in the School of Electrical and Electronic Engineering to deliver this potentially life-saving technology.

Meanwhile, Professor Anne Neville’s team in the School of Mechanical Engineering will research new ways of designing the polymer nano-particles required.

Professor Wilkins said: “Once we have the optimum design, we could quickly start producing thousands of litres of nanoparticle fluid, adding just a tiny percentage to the gypsum mix.”

Leeds is the only UK university asked to join 25 other partners in the project, led by the German building manufacturer Knauf. Due to be completed in December 2010, the work is worth around £980,000 to Leeds.

Simon Jenkins | alfa
Further information:
http://reporter.leeds.ac.uk/524/s1.htm

More articles from Architecture and Construction:

nachricht Designing Architecture with Solar Building Envelopes
16.01.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht How to inflate a hardened concrete shell with a weight of 80 t
11.01.2017 | Technische Universität Wien

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>