Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kent awarded £322k for study into the electro-magnetic architecture of buildings

31.10.2006
Dr John Batchelor and Professor Ted Parker in the Department of Electronics, University of Kent, have received a grant of £322,910 from the Engineering and Physical Sciences Research Council (EPSRC) to co-ordinate an investigation into the electro-magnetic architecture of buildings with the aim of better controlling indoor radio signal strengths.

Their research will ultimately improve wireless network access in offices and also security in prisons where the illicit use of mobile phones is widespread.

The project, which begins in January 2007, is in collaboration with the universities of Manchester (who received £228k) and Auckland (New Zealand), and the Police Information Technology Organisation which has pledged a further £30,000. This will bring the total funding for the project to £581,000 over three years.

Dr Batchelor explained: ‘Our research will involve integrating frequency selective surfaces into building walls. These surfaces can either pass or block certain radio frequencies meaning that transmissions can be contained in, or passed out of sealed rooms. This has promising implications for ‘reusing’ radio signals in adjacent rooms and increasing the total number of wireless channels available, or conversely, blocking signals completely and stopping people from making unauthorised mobile phone calls. Modern architectural regulations are aimed only at structural and aesthetical issues, while ignoring the problem of controlling access to an ever expanding wireless infrastructure.’

Dr Batchelor is a Senior Lecturer in Electronic Engineering with research interests in the design and modelling of multi-band antennae for personal and mobile communication systems, and reduced size frequency selective structures for incorporation into smart buildings for control of the radio spectrum. Professor Parker is Professor Emeritus of Radio Communications, with research interests in microwave antennae, frequency selective surfaces for microwave and millimetre wave multiband antennae, radomes, and the electromagnetic architecture of buildings, particularly time-dependent and frequency-dependent screening for secure buildings.

Gary Hughes | alfa
Further information:
http://www.kent.ac.uk/news

More articles from Architecture and Construction:

nachricht Smart buildings through innovative membrane roofs and façades
31.08.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Concrete from wood
05.07.2017 | Schweizerischer Nationalfonds SNF

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>