Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers of the UGR apply the method of acoustic emission to building diagnose, restoration and maintenance

Although their voice is imperceptible, even stones scream when they are damaged. They emit an ultrasound that reveals the state of health of the building or construction they support and they can even tell where the damage is and what can happen in future if we do not deal with the problem.

A research team of the University School of Technical Architecture of the University of Granada [], supervised by professor Antolino Gallego Molina is in charge since several years ago of listening to the laments of the materials using a technique, called acoustic emission, that auscultates the structural elements to get to know what happens inside from the emitted ultrasound.

This system can find out from an imperceptible fissure for the human eye to other damage by placing piezoelectric sensors that pick up the ultrasounds and send them afterwards to a computer system of information processing whose results can help to diagnose, restore and maintain any architectural collection.

The researchers, who are applying this technique in the field of Civil Engineering and construction, have only carried out laboratory tests until the moment, but their contacts with companies of construction materials will make their expansion to other problems of interest possible “before long”, according to professor Gallego, who adds that, although the acoustic emission technique can be used in diverse studies, his team will focus on two specific fields “fibre concrete quality control, especially used to supply uniform efforts with equal performance in all directions and avoid fragile fracture, such as in large elements, paving or tunnel or slope coating, and on the quality and functionality analysis of the mortars used to restore historical buildings”.

The professor of the Department of Applied Physics of the UGR [], who works in collaboration with professors of materials and construction of the Department of Architectural Constructions and physicists of the University of Jaen, explains that, in the case of fibre concrete, (reinforced with steel or glass fibres, instead of the traditional steel bars) “is practically impossible” to do a fine quality control with the existing systems, as it is a material whose functionality can not be measured because it takes more or less time to brake after conventional tests with loading machines. Therefore, the use of the technique of acoustic emission would be advisable in these cases when ultrasound can reveal what is happening inside the material.

As regards quality analysis of mortars in restoration processes, Gallego says that in many cases, when new materials are added to restore a building, there are adhesion problems besides construction problems. It is very important considering that such adherence capacity guarantees the future maintenance of the recovered area. In this case, the technique of acoustic emission could also be promising to assess such adherence and, therefore, to determine if such adhesion will end up giving way or not.

Scarce presence in Spain

Despite the advantages of this method, its implementation in Spain is still very scarce. According to the physicist, only a private company located in Madrid is developing works with the technique of acoustic emission and the majority of them outside the country, specially set aside for corrosion detection in oil tanks and by-products. However, countries like the United States, Germany, England, France, Argentina, Brazil or Japan use that system in multiple areas from bridge vigilance to guarantee their security or the diagnose of historical buildings to earthquake prevention or the study of materials that compose oil and gas drums to prevent them from breaking, with the consequent problems for the economy and the environment.

In this sense, Gallego Molina points out that many of these applications should be developed here to guarantee the safety of all types of constructions such as bridges, port complexes or storage systems like the oil drums used in the oil mills of olive provinces like Granada, Jaen and Cordoba.

On the other hand, the supervisor of the research project also demands the organization of training courses, more attention on the part of the Spanish Association for Non-Destructive Tests, as there are not specialized experts in this field, and a major implication on the part of the Spanish System for Research, Development and Innovation.

Antonio Marín Ruiz | alfa
Further information:

More articles from Architecture and Construction:

nachricht Rock solid: Carbon-reinforced concrete from Augsburg
11.10.2016 | Universität Augsburg

nachricht Heating and cooling with environmental energy
22.09.2016 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>