Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SRS Researchers Test Chinese Tallow Tree For Use in Building Materials

27.07.2006
A preliminary study by USDA FS Southern Research Station (SRS) researchers and cooperators shows that Chinese tallow tree, a nonnative invasive plant in the southeastern United States, holds promise as a material for bio-based composite building panels. In a technical note in the June 2006 issue of Forest Products Journal, the researchers report positive results from tests on 3 different types of panels made from Chinese tallow tree.

Because Chinese tallow tree grows rapidly, has seeds rich in oils, abundant flowers, and colorful fall foliage, it has been widely planted both as an ornamental and a crop across the Southeast. Now considered a noxious pest by the USDA Natural Resources Conservation Service, the plant has become a serious problem in east Texas, Louisiana, and Mississippi, where is establishes dense stands that quickly out compete most other tree species

The rapid expansion of the Chinese tallow tree into Southern forests has lead to a call to investigate its possible uses in the forest products industry. “The low density and light color of the wood make it an ideal candidate for producing composite panels, especially oriented strandboard, medium density fiberboard and particleboard,” said Les Groom, project leader for the SRS Utilization of Southern Forest Resources unit in Pineville, LA, and co-author of the article with SRS research scientist Tom Eberhardt and technologist Chung Hse.

“One of the barriers to using Chinese tallow tree for composites has been the fear that by developing an industrial use for the plant we would be encouraging people to plant more of it,” Groom continued. “But if it performs well as the sole material for composite panels, it should also perform well when mixed with other species. So, if mixed stands of trees are harvested commercially for use in composites, the Chinese tallow tree in the stand could be added in without affecting product quality.”

Using standard industrial methods, the researchers produced three types of panels-flakeboard, particleboard, and fiberboard-and tested them for various mechanical and physical properties. Chinese tallow tree tested up to standards for all three panel types, with the wood’s relatively low density and high compaction ratio adding to its potential. “We have heard anecdotally that buyers prefer brightly colored panels, so the light color of Chinese tallow tree might also work to its advantage,” said Groom, who emphasized that the studies were preliminary, and that more research is needed on the basic anatomical, chemical, mechanical, and physical properties of the species.

“Most research has focused on eradicating this plant rather than using it,” said Groom. “Finding a commercial use for Chinese tallow tree could actually underwrite efforts to control it.

For more information:
Leslie Groom at 318-473-7267 or lgroom@fs.fed.us

Les Groom | EurekAlert!
Further information:
http://www.fs.fed.us

More articles from Architecture and Construction:

nachricht Flexible protection for "smart" building and façade components
30.11.2016 | Fraunhofer-Institut für Silicatforschung ISC

nachricht Healthy living without damp and mold
16.11.2016 | Fraunhofer-Gesellschaft

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>