Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT tool may reveal architectural past

09.03.2006
A computer design tool originally created for animation may soon unlock the secrets of the structure of ancient cathedrals, according to MIT Assistant Professor John Ochsendorf of architecture.

A structural engineer specializing in architectural and construction history, Ochsendorf recently presented to colleagues a virtual design method that has been extended in novel ways by a team of architects, computer scientists and engineers at MIT.

"This is the kind of work - crossing the boundaries of engineering, history and architecture - that could only happen at MIT," Ochsendorf said.

The method, known as particle-spring systems, is a three-dimensional design tool that was originally developed by computer scientists for creating graphics such as character animation and cloth simulation. For example, particle-spring systems produced the clothes "worn" by virtual characters such as Yoda in "Star Wars Episode III: Revenge of the Sith."

The interdisciplinary MIT team proposes to employ particle-spring systems dynamically: They are using the software, which models the gravitational load on a given shape’s exterior, to find a structure’s most efficient form and to allow the architect or engineer to interact with the form-finding program while it is still running.

Ochsendorf, assistant professor in the Building Technology Program, described the software to colleagues at the annual meeting of the American Association for the Advancement of Science (AAAS) on Feb. 16-20 . Ochsendorf’s talk was titled "Arches: Gateways From Science to Culture."

The team’s software is the "next generation of design tools. My dream is to use it to understand Gothic cathedrals," he said.

Historically, finding and creating new structural forms was accomplished by painstaking physical means. Antoni Gaudi, Spanish architect and designer of the chapel of Barcelona’s Colonia Guell, devoted 10 years to a "hanging chain" model made of weights on strings that would serve as an upside down version of the efficient arched forms he sought.

Gaudi’s work followed the 17th century discovery by English scientist Robert Hooke that, "As hangs the flexible chain, so but inverted will stand the rigid arch."

MIT’s virtual method, Ochsendorf said, is as straightforward as Gaudi’s physical method for exploring and testing new forms, but it uses time, materials and money more efficiently.

"Using the particle-spring approach, a three-dimensional structure such as a cathedral can be created in only a few minutes. Most importantly, the user can change form and forces in real time while the solution is still emerging," Ochsendorf and Axel Kilian (Ph.D. 2006) wrote in a recent paper, "Particle-Spring Systems for Structural Form-Finding."

Ochsendorf said he envisions MIT’s particle-spring systems method being used to analyze and illuminate historic masonry methods (these secrets were closely guarded by guilds) and to support sustainable modern building practices by discovering more efficient - and less-resource-consuming - structures.

MIT’s own Kresge Auditorium, designed by Eero Saarinen and built in 1955, offers an example. The hanging chain software program could have reduced the amount of concrete used in its roof.

"The Kresge roof is one-eighth of a sphere. The shell is made of 6 inches of concrete, and it could have been made using only 3 inches of concrete," Ochsendorf said.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Architecture and Construction:

nachricht Construction Impact Guide
18.05.2018 | Hochschule RheinMain

nachricht New, forward-looking report outlines research path to sustainable cities
24.01.2018 | National Science Foundation

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

New cellular pathway helps explain how inflammation leads to artery disease

22.06.2018 | Life Sciences

When fluid flows almost as fast as light -- with quantum rotation

22.06.2018 | Physics and Astronomy

Exposure to fracking chemicals and wastewater spurs fat cell development

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>