Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT tool may reveal architectural past

09.03.2006
A computer design tool originally created for animation may soon unlock the secrets of the structure of ancient cathedrals, according to MIT Assistant Professor John Ochsendorf of architecture.

A structural engineer specializing in architectural and construction history, Ochsendorf recently presented to colleagues a virtual design method that has been extended in novel ways by a team of architects, computer scientists and engineers at MIT.

"This is the kind of work - crossing the boundaries of engineering, history and architecture - that could only happen at MIT," Ochsendorf said.

The method, known as particle-spring systems, is a three-dimensional design tool that was originally developed by computer scientists for creating graphics such as character animation and cloth simulation. For example, particle-spring systems produced the clothes "worn" by virtual characters such as Yoda in "Star Wars Episode III: Revenge of the Sith."

The interdisciplinary MIT team proposes to employ particle-spring systems dynamically: They are using the software, which models the gravitational load on a given shape’s exterior, to find a structure’s most efficient form and to allow the architect or engineer to interact with the form-finding program while it is still running.

Ochsendorf, assistant professor in the Building Technology Program, described the software to colleagues at the annual meeting of the American Association for the Advancement of Science (AAAS) on Feb. 16-20 . Ochsendorf’s talk was titled "Arches: Gateways From Science to Culture."

The team’s software is the "next generation of design tools. My dream is to use it to understand Gothic cathedrals," he said.

Historically, finding and creating new structural forms was accomplished by painstaking physical means. Antoni Gaudi, Spanish architect and designer of the chapel of Barcelona’s Colonia Guell, devoted 10 years to a "hanging chain" model made of weights on strings that would serve as an upside down version of the efficient arched forms he sought.

Gaudi’s work followed the 17th century discovery by English scientist Robert Hooke that, "As hangs the flexible chain, so but inverted will stand the rigid arch."

MIT’s virtual method, Ochsendorf said, is as straightforward as Gaudi’s physical method for exploring and testing new forms, but it uses time, materials and money more efficiently.

"Using the particle-spring approach, a three-dimensional structure such as a cathedral can be created in only a few minutes. Most importantly, the user can change form and forces in real time while the solution is still emerging," Ochsendorf and Axel Kilian (Ph.D. 2006) wrote in a recent paper, "Particle-Spring Systems for Structural Form-Finding."

Ochsendorf said he envisions MIT’s particle-spring systems method being used to analyze and illuminate historic masonry methods (these secrets were closely guarded by guilds) and to support sustainable modern building practices by discovering more efficient - and less-resource-consuming - structures.

MIT’s own Kresge Auditorium, designed by Eero Saarinen and built in 1955, offers an example. The hanging chain software program could have reduced the amount of concrete used in its roof.

"The Kresge roof is one-eighth of a sphere. The shell is made of 6 inches of concrete, and it could have been made using only 3 inches of concrete," Ochsendorf said.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

More articles from Architecture and Construction:

nachricht Concrete from wood
05.07.2017 | Schweizerischer Nationalfonds SNF

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>