Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New bridge built in two weeks

04.06.2008
With new bridge-building materials, industrial production methods, and an efficient construction process, it will be possible to start using a bridge only two weeks after construction starts on the site. This is shown in a new dissertation from Chalmers University of Technology.

A pilot study of the new bridge concept, the i-bridge, is included in Peter Harryson’s doctoral dissertation in concrete construction at Chalmers. The bridge consists of extremely light sections that are assembled on site.

The load-bearing parts consist of v-shaped fiberglass beams that are reinforced with carbon fibers on the underside. The beams interact with a thin bridge deck that is prefabricated out of steel-fiber-reinforced cement with extremely high strength. Since these materials are very durable, they are advantageous in a life-cycle perspective, and they are highly suitable for industrial construction.

However, these materials are not in use in the new construction of bridges today.

“The new bridge type is a construction that projects several years into the future, but the study shows that it would be technologically possible to build this bridge today if the concept is further elaborated,” says Peter Harryson. “However, at present the economic conditions are constrained by the major investments that would be needed to start production, and by the high prices for fiber-composite materials.”

Today the new type of bridge is estimated to cost more than twice as much as a conventional bridge. But the economic potential of the bridge concept can be enhanced considerably if the economic calculations are done in another way. Besides the shorter construction time, there are several advantages both from a life-cycle perspective and in terms of the working environment that could be valued higher.

The project has been part of (the Swedish Governmental Agency for Innovation Systems) Vinnova’s research program “Road, Bridge, Tunnel.” Peter Harryson has been an industrial doctoral candidate with the Swedish Road Administration, which has provided funding.

The dissertation, titled Industrial Bridge Engineering – Structural developments for more efficient bridge construction, was publicly defended on May 29.

Sofie Hebrand | alfa
Further information:
http://publications.lib.chalmers.se/cpl/record/index.xsql?pubid=70808

More articles from Architecture and Construction:

nachricht Smart buildings through innovative membrane roofs and façades
31.08.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Concrete from wood
05.07.2017 | Schweizerischer Nationalfonds SNF

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>