Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New mineralogical techniques contribute to prevent national heritage damage

08.04.2008
  • Churches, palaces, monasteries, paintings, sculptures… National heritage is threatened by stone decay.
  • Researchers from Granada have designed crystallization inhibitors against the salt that destroys stone buildings, thereby contributing to the improvement of maintenance and restoration techniques.
  • The work forms part of a European project with the participation of research centres of Germany, Belgium, Great Britain, Greece, Holland, Czech Republic and Spain.

Humidity, environmental pollution, cleaning with aggressive products for the chemical composition of the rock, etc give rise to the appearance of salts which cause stone decomposition, paint coats detachment, dust accumulation, etc.


Salts in the mural paintings of the upper section of the Church of the Monastery of San Jerónimo (Granada).


Laboratory tests in calcarenite test-tubes simulating alteration processes due to salt crystallization in the bases of building walls.

The treatments used up to now to deal with the problem have been directed, almost exclusively, to preserve the beauty of the affected monument, assuming, with an almost fatalist attitude, that the damage will go on as an effect of passing of time.

European experts joint in the SALTCONTROL project have collaborated in a new work line to deal with the problem: Blocking inside the stone the mineral salt crystallization process that ends up destroying it.

One of the works carried out in the framework of SALTCONTROL is the doctoral thesis “Prevención del daño debido a cristalización de sales en el patrimonio histórico construido mediante el uso de inhibidores de cristalización” (Damage prevention due to salt crystallization in national heritage through the use of crystallization inhibitors), read by Encarnación María Ruiz Agudo, under the supervision of Prof Carlos Manuel Rodríguez Navarro; as well as several papers published by scientific journals such as Journal of Physical Chemistry, Environmental Geology, Scanning y Journal of the Japanese Association for Crystal Growth.

According to Ruiz Agudo (Centro Andaluz del Medio Ambiente – Department of Mineralogy and Petrology of the University of Granada) “ornamental porous materials’ damage due to salt attack is one of the most aggressive alteration mechanisms that affect constructed heritage. In the last decades, we have developed different methods to prevent or reduce the damage due to salt crystallization in ornamental rock pores, almost all with little success”.

The thesis’s research line and the above mentioned papers have followed the recent techniques that intend to use additives to modify the crystallization process and prevent or reduce the damage produced in the rock. Up to now, most of the works in this field have assessed the efficiency of these treatments in slightly soluble salts, such as calcium and barium sulphates. The thesis “has proved the effectiveness of this type of treatment in highly soluble salts, such as sodium and magnesium sulphates, as well as sodium nitrate, which can usually be found in historic buildings”.

Applied science

The research work has been applied to the case of the effects of these treatments in the rock extracted in Santa Pudia’s quarries (Escúzar,-Granada), used in the construction of Renaissance buildings in Granada such as the Monastery of San Jerónimo, the Cathedral or the Royal Chapel. These buildings show strong alteration phenomenon due to crystallization in sodium sulphate, magnesium and sodium nitrate.

The work has conducted to the carrying out of salt crystallization tests in laboratory, which simulate alteration processes due to salt crystallization in the bases on historic buildings’ walls. “Later –says Ruiz Agudo-, we prepared a method for the implementation of the treatment developed in practical cases of ornamental stone materials conservation. Finally, in a last phase of development of the research project, we applied such treatment in pilot areas on the Monastery of San Jerónimo (Granada), where there had been important problems due to salt crystallization”.

The final result of the research work proposes the application of low-cost additives, which have proved to be very effective in the fight against the problems of ornamental porous materials. On the other hand, the research work “involves a methodology to deal with the study of damage caused by salts and the selection of the most adequate type of additive for a specific substrate and type of salt. The object of the methodology is the study of the problem in situ, in order to carry out laboratory tests that allow to select the concentration, pH and the most appropriate application method and finally to go back to the building to test the treatment in pilot areas, which permits to guarantee the success in the application of salt crystallization inhibitors inside stony materials, as we have proved in San Jerónimo”.

SALTCONTROL
The research work is part of the SALTCONTROL project, financed by the 6th framework Programme of the EU for the period 2004-2007. Together with the University of Granada, other organisms have participated in the project: the University of Münster (Germany), the University of Gant (Belgium), the University College of London, the University of Patras in Greece, the Technical University of Prague, the Architecture Conservation Centre TNO of Holland, the Andalusian Institute of National Heritage and the Technical University of Eindhoven.
SALTCONTROL’s results have been successfully applied in the Monastery of San Jerónimo (Granada-Spain) and the Fortress of Teresina (Prague, Czech Republic).

Reference: Encarnación Mª Ruiz Agudo. Dpt Mineralogy and Petrology. Phone numbers. 958248535 - 958 24 8535. E-mail. encaruiz@ugr.es. Prof Carlos Manuel Rodríguez Navarro. Phone number. 958246616. E-mail. carlosrn@ugr.es

Antonio Marín Ruiz | CEAMA-Universidad de Granada
Further information:
http://www.ugr.es

More articles from Architecture and Construction:

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>