Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New mineralogical techniques contribute to prevent national heritage damage

  • Churches, palaces, monasteries, paintings, sculptures… National heritage is threatened by stone decay.
  • Researchers from Granada have designed crystallization inhibitors against the salt that destroys stone buildings, thereby contributing to the improvement of maintenance and restoration techniques.
  • The work forms part of a European project with the participation of research centres of Germany, Belgium, Great Britain, Greece, Holland, Czech Republic and Spain.

Humidity, environmental pollution, cleaning with aggressive products for the chemical composition of the rock, etc give rise to the appearance of salts which cause stone decomposition, paint coats detachment, dust accumulation, etc.

Salts in the mural paintings of the upper section of the Church of the Monastery of San Jerónimo (Granada).

Laboratory tests in calcarenite test-tubes simulating alteration processes due to salt crystallization in the bases of building walls.

The treatments used up to now to deal with the problem have been directed, almost exclusively, to preserve the beauty of the affected monument, assuming, with an almost fatalist attitude, that the damage will go on as an effect of passing of time.

European experts joint in the SALTCONTROL project have collaborated in a new work line to deal with the problem: Blocking inside the stone the mineral salt crystallization process that ends up destroying it.

One of the works carried out in the framework of SALTCONTROL is the doctoral thesis “Prevención del daño debido a cristalización de sales en el patrimonio histórico construido mediante el uso de inhibidores de cristalización” (Damage prevention due to salt crystallization in national heritage through the use of crystallization inhibitors), read by Encarnación María Ruiz Agudo, under the supervision of Prof Carlos Manuel Rodríguez Navarro; as well as several papers published by scientific journals such as Journal of Physical Chemistry, Environmental Geology, Scanning y Journal of the Japanese Association for Crystal Growth.

According to Ruiz Agudo (Centro Andaluz del Medio Ambiente – Department of Mineralogy and Petrology of the University of Granada) “ornamental porous materials’ damage due to salt attack is one of the most aggressive alteration mechanisms that affect constructed heritage. In the last decades, we have developed different methods to prevent or reduce the damage due to salt crystallization in ornamental rock pores, almost all with little success”.

The thesis’s research line and the above mentioned papers have followed the recent techniques that intend to use additives to modify the crystallization process and prevent or reduce the damage produced in the rock. Up to now, most of the works in this field have assessed the efficiency of these treatments in slightly soluble salts, such as calcium and barium sulphates. The thesis “has proved the effectiveness of this type of treatment in highly soluble salts, such as sodium and magnesium sulphates, as well as sodium nitrate, which can usually be found in historic buildings”.

Applied science

The research work has been applied to the case of the effects of these treatments in the rock extracted in Santa Pudia’s quarries (Escúzar,-Granada), used in the construction of Renaissance buildings in Granada such as the Monastery of San Jerónimo, the Cathedral or the Royal Chapel. These buildings show strong alteration phenomenon due to crystallization in sodium sulphate, magnesium and sodium nitrate.

The work has conducted to the carrying out of salt crystallization tests in laboratory, which simulate alteration processes due to salt crystallization in the bases on historic buildings’ walls. “Later –says Ruiz Agudo-, we prepared a method for the implementation of the treatment developed in practical cases of ornamental stone materials conservation. Finally, in a last phase of development of the research project, we applied such treatment in pilot areas on the Monastery of San Jerónimo (Granada), where there had been important problems due to salt crystallization”.

The final result of the research work proposes the application of low-cost additives, which have proved to be very effective in the fight against the problems of ornamental porous materials. On the other hand, the research work “involves a methodology to deal with the study of damage caused by salts and the selection of the most adequate type of additive for a specific substrate and type of salt. The object of the methodology is the study of the problem in situ, in order to carry out laboratory tests that allow to select the concentration, pH and the most appropriate application method and finally to go back to the building to test the treatment in pilot areas, which permits to guarantee the success in the application of salt crystallization inhibitors inside stony materials, as we have proved in San Jerónimo”.

The research work is part of the SALTCONTROL project, financed by the 6th framework Programme of the EU for the period 2004-2007. Together with the University of Granada, other organisms have participated in the project: the University of Münster (Germany), the University of Gant (Belgium), the University College of London, the University of Patras in Greece, the Technical University of Prague, the Architecture Conservation Centre TNO of Holland, the Andalusian Institute of National Heritage and the Technical University of Eindhoven.
SALTCONTROL’s results have been successfully applied in the Monastery of San Jerónimo (Granada-Spain) and the Fortress of Teresina (Prague, Czech Republic).

Reference: Encarnación Mª Ruiz Agudo. Dpt Mineralogy and Petrology. Phone numbers. 958248535 - 958 24 8535. E-mail. Prof Carlos Manuel Rodríguez Navarro. Phone number. 958246616. E-mail.

Antonio Marín Ruiz | CEAMA-Universidad de Granada
Further information:

More articles from Architecture and Construction:

nachricht Rock solid: Carbon-reinforced concrete from Augsburg
11.10.2016 | Universität Augsburg

nachricht Heating and cooling with environmental energy
22.09.2016 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>