Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NUS Research Team Pioneers Novel Ultra Light-Weight Cloud Arch Architectural Technology for Sustainable Construction

10.10.2014

A research team from the National University of Singapore (NUS) has developed Cloud Arch, an innovative, ultra-light architecture that will revolutionise the way large open public spaces, such as market, airport, stadium, concert hall, factory, are built.

This patent-pending technology is jointly developed by a research team led by Japanese architect Assistant Professor Shinya Okuda, who is from the NUS School of Design and Environment, and Professor Tan Kiang Hwee from the NUS Faculty of Engineering, in collaboration with structural engineering consultancy firm Web Structures.


Fabian Ong

Cloud Arch on display at Marina Bay Sands

Cloud Arch is a new generation of architectural technology that harnesses ultra-light materials to meet the construction needs of sustainable future. The first prototype debuted as one of the two winners of Archifest 2014 Pavilion Competition that was held in Singapore from May to June 2014. Cloud Arch was on display from 26 September to 11 October 2014.

Assistant Professor Shinya Okuda, who is from the NUS Department of Architecture, said, “Shed is one of the most primitive forms of architecture. We are interested in creating column-free space in a way that saves materials and time, by using ultra lightweight materials. We decided to use Expanded Polystyrene (EPS) foam, a widely used packaging material.

More than 95% of this material is air, and its composite can be fire-resistant. After two years of prototyping and structural testing, we successfully developed a technique to control the composite material and applied it for the construction of long-span structures. This novel technology has been granted a provisional US patent.”

"We have also developed several prototypes - starting from a mere 4-metre span, to the current design comprising two sets of 14-metre span in the form of the Pavilion. As the design looks like a floating cloud, we called it Cloud Arch," added Asst Prof Okuda.

Cloud Arch: Lightweight, scalable, reduces costs and setup time

Elaborating on the merits of Cloud Arch, Asst Prof Okuda said, "Structurally optimised forms are often doubly curved. By applying digital fabrication technology on the EPS foam, we could shape complex forms in a fast and cost-efficient manner. As the material is extremely lightweight, we could achieve significant savings in terms transportation cost as well as the time taken to set up and dismantle the structures. With Cloud Arch, we hope to reduce the construction cost by one-third and construction time by half, compared to conventional construction materials, such as concrete.”

Professor Tan Kiang Hwee, who is from the NUS Department of Civil and Environmental Engineering, added, "EPS foam has almost similar compression strength to weight ratio as concrete and is currently used as landfill for landscape works. We are also testing its composite properties when reinforced with bonded fabric as a possible material for permanent construction."

Dr. Hossein Rezai, Director of Web Structures, which has been conducting structural simulations of the Cloud Arch commented, "A very encouraging fact is that, we have barely needed to increase the EPS composite thickness for the longer spans, but only to reinforce its composite strength. This implies that Cloud Arch's advantageous ultra-lightweight, will be further realised when the target spans get longer."

The research team’s next step will be to develop a 24-metre span factory roofing prototype. This project is supported by the NUS-JTC Industrial Infrastructure Innovation (I3) Centre, which was set up jointly by NUS and JTC Corporation in 2011 to promote the development of innovative and sustainable industrial infrastructure solutions in Singapore. Other possible applications of the technology include developing longer spans for airplane hangars.

Mr David Tan, Assistant CEO of JTC Corporation’s Development Group, said, “JTC is glad to support the project through the NUS-JTC I3 Centre. We hope that the Centre will continue to push the boundaries of innovation and explore new possibilities in sustainable industrial infrastructure solutions, land intensification, planning and design, and systems integration and optimisation, to support the transformation and growth of Singapore’s industrial landscape.”

Mr Theodore Chan, 54th President of Singapore Institute of Architect and Chairman of the Jury Panel for the Archifest 2014 Pavilion competition noted in the competition’s announcement letter dated 4 July 2014, "A breakthrough in technology, the patent-filed structural-foam of Cloud Arch intrinsically lends itself to a statement of true architectural form. The innovative use of fire-resistant structural foam coupled with technological research and rigorous testing, is a commendable effort on the part of the architect-designers behind Cloud Arch. The efficiently spanned arched roof immediately achieves a 'wow' factor together with relative ease and speed of construction. In today's context of the industry's drive towards enhanced productivity and buildability, Cloud Arch represents great promise in material technology advancement."

On his vision for future applications of Cloud Arch, Asst Prof Okuda said, "20th century visionary R. Buckminster Fuller once envisioned his invention Geodesic dome to cover 3km radius over the Manhattan in the 1960's for the energy efficient built environment. We hope that the Cloud Arch could make such a great impact on the sustainable built environment in the 21st Century.”

Contact Information

Chew Huoy Miin
miin@nus.edu.sg
Phone: +65 6516 6822

Chew Huoy Miin | newswise
Further information:
http://www.nus.edu.sg

More articles from Architecture and Construction:

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Electrical 'switch' in brain's capillary network monitors activity and controls blood flow

27.03.2017 | Health and Medicine

Clock stars: Astrocytes keep time for brain, behavior

27.03.2017 | Life Sciences

Sun's impact on climate change quantified for first time

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>