Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New NIST testing device may help to 'seal the deal' for building owners

17.03.2011
Just as a chain is as strong as its weakest link, a building is as secure against the environment as its most degraded joint sealants, about 50 percent of which fail in less than 10 years after installation.

The upshot for U.S. homeowners is that moisture damage due to failed sealants is responsible for much of the $65 billion to $80 billion they collectively shell out for house repairs annually.

Researchers at the National Institute of Standards and Technology (NIST) are assembling a toolkit of measurement devices and scientific data that will help manufacturers of sealants systematically improve the protective performance of their products.

Their latest contribution, described in the current issue of the Review of Scientific Instruments,* is an outdoor testing system that tracks real weather conditions—by the minute—and measures the squeezing and stretching that occur in sealants as the building moves with temperature changes.

The NIST-developed testing devices could supplant current methods, which essentially entail exposing sealants to the elements for extended periods with no movement and then visually inspecting the materials for cracks and other signs of degradation. Using materials that can be purchased at the local hardware store—such as wood, PVC pipe and toilet flanges—and combining them with arrays of load and environmental sensors, NIST research chemist Christopher White and his colleagues built a state-of-the-art testing system representative of real-world conditions.

In construction, sealants are used to close gaps between building materials—usually unlike materials, such as steel and glass or wood and concrete. Different materials expand and contract differently in response to changes in temperature, relative humidity and other conditions. Because of these differences between adjacent materials, sealants are regularly stretched, compressed and, in effect, pulled in different directions.

All that motion, White says, can cause the material equivalent of fatigue, tearing and adhesion loss, allowing the water to breach the sealant defense.

"When you apply a sealant to a building joint—such as between window glass and steel in the building frame—you are trying to seal displacements that occur because the materials expand and contract at different rates," White says.

"These new and very inexpensive testing devices," he explains, "induce movements that are very similar to what a sealant would see in the actual application, in a building."

Designs of the experimental testing devices have been shared with a consortium of U.S. sealant manufacturers who have already adopted this new technology. Additionally, these designs are incorporated in a new ASTM draft standard soon to be put to vote.

* C. C. White, K. T. Tan, E. P. O'Brien, D. L. Hunston, J. W. Chin and R. S. Williams. Design, fabrication, and implementation of thermally driven outdoor testing devices for building joint sealants. Rev. Sci. Instrum. 82, 025112 (2011); doi:10.1063/1.3543817

Mark Bello | EurekAlert!
Further information:
http://www.nist.gov

More articles from Architecture and Construction:

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>