Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New NIST testing device may help to 'seal the deal' for building owners

17.03.2011
Just as a chain is as strong as its weakest link, a building is as secure against the environment as its most degraded joint sealants, about 50 percent of which fail in less than 10 years after installation.

The upshot for U.S. homeowners is that moisture damage due to failed sealants is responsible for much of the $65 billion to $80 billion they collectively shell out for house repairs annually.

Researchers at the National Institute of Standards and Technology (NIST) are assembling a toolkit of measurement devices and scientific data that will help manufacturers of sealants systematically improve the protective performance of their products.

Their latest contribution, described in the current issue of the Review of Scientific Instruments,* is an outdoor testing system that tracks real weather conditions—by the minute—and measures the squeezing and stretching that occur in sealants as the building moves with temperature changes.

The NIST-developed testing devices could supplant current methods, which essentially entail exposing sealants to the elements for extended periods with no movement and then visually inspecting the materials for cracks and other signs of degradation. Using materials that can be purchased at the local hardware store—such as wood, PVC pipe and toilet flanges—and combining them with arrays of load and environmental sensors, NIST research chemist Christopher White and his colleagues built a state-of-the-art testing system representative of real-world conditions.

In construction, sealants are used to close gaps between building materials—usually unlike materials, such as steel and glass or wood and concrete. Different materials expand and contract differently in response to changes in temperature, relative humidity and other conditions. Because of these differences between adjacent materials, sealants are regularly stretched, compressed and, in effect, pulled in different directions.

All that motion, White says, can cause the material equivalent of fatigue, tearing and adhesion loss, allowing the water to breach the sealant defense.

"When you apply a sealant to a building joint—such as between window glass and steel in the building frame—you are trying to seal displacements that occur because the materials expand and contract at different rates," White says.

"These new and very inexpensive testing devices," he explains, "induce movements that are very similar to what a sealant would see in the actual application, in a building."

Designs of the experimental testing devices have been shared with a consortium of U.S. sealant manufacturers who have already adopted this new technology. Additionally, these designs are incorporated in a new ASTM draft standard soon to be put to vote.

* C. C. White, K. T. Tan, E. P. O'Brien, D. L. Hunston, J. W. Chin and R. S. Williams. Design, fabrication, and implementation of thermally driven outdoor testing devices for building joint sealants. Rev. Sci. Instrum. 82, 025112 (2011); doi:10.1063/1.3543817

Mark Bello | EurekAlert!
Further information:
http://www.nist.gov

More articles from Architecture and Construction:

nachricht Flexible protection for "smart" building and façade components
30.11.2016 | Fraunhofer-Institut für Silicatforschung ISC

nachricht Healthy living without damp and mold
16.11.2016 | Fraunhofer-Gesellschaft

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>