Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New NIST testing device may help to 'seal the deal' for building owners

17.03.2011
Just as a chain is as strong as its weakest link, a building is as secure against the environment as its most degraded joint sealants, about 50 percent of which fail in less than 10 years after installation.

The upshot for U.S. homeowners is that moisture damage due to failed sealants is responsible for much of the $65 billion to $80 billion they collectively shell out for house repairs annually.

Researchers at the National Institute of Standards and Technology (NIST) are assembling a toolkit of measurement devices and scientific data that will help manufacturers of sealants systematically improve the protective performance of their products.

Their latest contribution, described in the current issue of the Review of Scientific Instruments,* is an outdoor testing system that tracks real weather conditions—by the minute—and measures the squeezing and stretching that occur in sealants as the building moves with temperature changes.

The NIST-developed testing devices could supplant current methods, which essentially entail exposing sealants to the elements for extended periods with no movement and then visually inspecting the materials for cracks and other signs of degradation. Using materials that can be purchased at the local hardware store—such as wood, PVC pipe and toilet flanges—and combining them with arrays of load and environmental sensors, NIST research chemist Christopher White and his colleagues built a state-of-the-art testing system representative of real-world conditions.

In construction, sealants are used to close gaps between building materials—usually unlike materials, such as steel and glass or wood and concrete. Different materials expand and contract differently in response to changes in temperature, relative humidity and other conditions. Because of these differences between adjacent materials, sealants are regularly stretched, compressed and, in effect, pulled in different directions.

All that motion, White says, can cause the material equivalent of fatigue, tearing and adhesion loss, allowing the water to breach the sealant defense.

"When you apply a sealant to a building joint—such as between window glass and steel in the building frame—you are trying to seal displacements that occur because the materials expand and contract at different rates," White says.

"These new and very inexpensive testing devices," he explains, "induce movements that are very similar to what a sealant would see in the actual application, in a building."

Designs of the experimental testing devices have been shared with a consortium of U.S. sealant manufacturers who have already adopted this new technology. Additionally, these designs are incorporated in a new ASTM draft standard soon to be put to vote.

* C. C. White, K. T. Tan, E. P. O'Brien, D. L. Hunston, J. W. Chin and R. S. Williams. Design, fabrication, and implementation of thermally driven outdoor testing devices for building joint sealants. Rev. Sci. Instrum. 82, 025112 (2011); doi:10.1063/1.3543817

Mark Bello | EurekAlert!
Further information:
http://www.nist.gov

More articles from Architecture and Construction:

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

nachricht Designing Architecture with Solar Building Envelopes
16.01.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>