Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Minneapolis disaster spawning new concepts in bridge research, testing and safety

17.11.2010
Civil engineers at Oregon State University have developed a new system to better analyze the connections that hold major bridge members together, which may improve public safety, help address a trillion-dollar concern about aging infrastructure around the world, and save lives.

When testing is complete and the technology implemented, the system might allow a technician working for a day to produce a better analysis of a bridge’s structural condition than a more expensive and highly-trained engineer could do in weeks.

Developed at OSU, the technology is being tested this fall by a simulated laboratory failure of the exact type of truss connecting plate that caused a bridge to collapse on Interstate 35W in Minneapolis in 2007, killing 13 people and injuring 145.

The work also brings focus to a little-understood aspect of bridge safety – that most failures are caused by connections, not the girders and beams they connect, as many people had assumed. The issues involved are a concern with thousands of bridges worth trillions of dollars in many nations.

“The tragic collapse of the interstate bridge across the Mississippi River in 2007 brought a lot of attention to this issue,” said Chris Higgins, a professor in the School of Civil and Construction Engineering at OSU. “For decades in bridge rating and inspections, we’ve been concentrating mostly on the members, but in fact it’s the connectors where most failures occur. And the failure of a single critical connection can bring down an entire bridge, just like it did in Minneapolis.”

This is a growing concern, Higgins said, because thousands of bridges were built around the world in the 1950s and later that may be nearing the end of their anticipated lifespan, including many of those on the interstate highway system in the United States. Maintenance, repair and replacement of this infrastructure could cost trillions of dollars, he said, at local, state and federal levels.

But prioritizing which bridges are still safe and which most urgently need repair or replacement is not easy and has never been obvious, Higgins said.

“The failure of the bridge in Minneapolis was caused by a single connecting plate that inspectors saw repeatedly,” Higgins said. “They took pictures of it, actually had to touch it, because an access ladder was right next to it when they were doing inspections.

“But it still wasn’t readily apparent that it had a deficient design and was distorted before the accident happened,” he said. “Then one day, as part of a repaving project, they had stockpiled material right above this weak spot, and the bridge collapsed.”

To address this issue, Higgins has created a computerized plate analysis system that incorporates digital imaging and machine vision, and can be used by any trained technician. It can provide sophisticated data that are much more precise than a human eye could detect, analyzing connections to make sure they meet specifications and are still sound. It should allow for more widespread, low-cost and accurate inspections that will better identify trouble spots before another disaster occurs, he said.

The system works, researchers say, but now they are putting it to the ultimate test, using a state-of-the-art structural testing laboratory and other technology at OSU that will provide real data unlike any other available in the world. Using a copy of the failed connector from the Minneapolis bridge, they are going to test it this fall by applying enormous forces until it collapses. The data provided should prove the efficacy and accuracy of the system.

Similar technology, Higgins said, might also be used to inspect construction processes for new buildings or bridges to make sure they meet design standards, or even help create customized replacement parts more easily and at lower cost for existing structures.

“The bridges built 40 and 50 years ago used the design standards available at the time, which were based on the forces it was believed the bridges would be exposed to,” Higgins said. “Now we have better quality materials, different construction procedures, more precise analysis methods, and we ask tougher questions, like what forces will it take to actually collapse a bridge.”

In other words, modern bridges are built better. But most of the world is still driving on older bridges that have to be maintained, used, and kept safe for some time, Higgins said. The new OSU technology may allow that to be done more cost effectively while increasing the accuracy of inspections.

The findings will be published soon, Higgins said, and the system may be used more broadly in the near future. Consultants and transportation agencies have already begun to deploy the system on bridges around the country.

The work has been supported in part by the Oregon Transportation Research and Education Consortium, a National University Transportation Center created by Congress in 2005, as a partnership between OSU, Portland State University, the University of Oregon and the Oregon Institute of Technology. Additional funding was provided by the Bridge Section of the Oregon Department of Transportation.

About the OSU College of Engineering: The OSU College of Engineering is among the nation’s largest and most productive engineering programs. In the past six years, the College has more than doubled its research expenditures to $27.5 million by emphasizing highly collaborative research that solves global problems, spins out new companies, and produces opportunity for students through hands-on learning.

Chris Higgins | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Architecture and Construction:

nachricht Smart buildings through innovative membrane roofs and façades
31.08.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Concrete from wood
05.07.2017 | Schweizerischer Nationalfonds SNF

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>