Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Minimally invasive building renovation

01.08.2012
Renovation projects to improve the energy performance of residential buildings involve a lot of messy construction work. Researchers have come up with a new modernization concept that reduces on-site installation times. Prefabricated multifunctional window modules offer a more convenient alternative to the usual renovation methods.

Surgeons commonly use minimally invasive techniques when operating in the abdomen. Instruments are inserted through a tiny incision in the abdominal wall, and the organs are visualized using an endoscope. This method is less stressful on the body than conventional surgery.


The window module with its surrounding insulation is simply inserted in the existing window opening.
© Fraunhofer IBP

A form of “minimally invasive intervention” could also be adopted by architects and builders, except that in this case the patients are buildings in need of upgrading to modern energy-efficiency standards. “The minimally invasive approach can be applied to the renovation of buildings, enabling their energy efficiency to be improved with a minimum of messy construction work,” says Michael Krause, a scientist at the Fraunhofer Institute for Building Physics IBP in Kassel. He and his research team have developed a system of multifunctional window modules that could be used as an alternative to the usual renovation methods that cause so much inconvenience to the building’s inhabitants. The “Prefab” project is funded by the German Federal Ministry of Economics and Technology (BMWi).

Normally, building improvement work to reduce energy consumption and CO2 emissions is carried out by separate specialized contractors, including insulation and window installers, heating engineers, electricians, and plumbers. But these different tasks are often not coordinated, a situation that can result in construction defects and prolong the duration of the renovation project. “Meanwhile, the inhabitants of the building have to put up with all the noise and mess, especially if a new air-conditioning or heating system is being installed at the same time. Sometimes it is even necessary to wait for the apartments to be vacated before the renovation work can be started,” comments Krause. “Our multifunctional window modules enable on-site installation times to be shortened, considerably reducing the stress experienced by the tenants.”

Prefabricated building components

In addition to the actual window and window frame, the modules are equipped with a technical systems box and a surrounding insulation panel, consisting for example of a polystyrene-based composite system. The self-supporting units are inserted in the existing window opening from the exterior, and provide additional external insulation around it. An alternative version permits architects to use a solution consisting of a timber frame in combination with a mineral insulating material such as fiberglass or rock wool. The removable technical systems box is located under the window sill. It provides room for installing components such as heat exchangers, decentralized micro-pumps for heating-system control, air filters, and even power sockets, ventilation channels, or Internet cabling. Electrical wiring and water pipes are installed on the outside wall underneath the insulation panel and routed into the building through cutouts in the technical systems box. Numerous additional activities such as installing cable conduits and plumbing systems thus become superfluous. The entire unit, including the box, is delivered fully assembled by the window manufacturer, significantly reducing the on-site installation time. Another advantage of installing all these components in an easily accessible box underneath the windowsill is that it simplifies maintenance. If repairs are necessary, any component can be retrofitted or replaced immediately. “By integrating heat exchangers and air circulation units in the renovation system, we can limit heat loss through the building envelope and ventilation. And by ensuring a high quality of workmanship, we can guarantee a perfectly airtight seal and avoid thermal bridges, in other words, no warm air can escape. All in all, the new system reduces energy consumption,” says its designer, who adds: “Because the insulation panels are constructed as self-supporting units, they are strong enough to envisage equipping them with solar collectors or photovoltaic cells.”

A demonstration version of the prefabricated, multifunctional window module is already available. It was manufactured by the institute’s industrial partner Walter Fenster + Türen in Kassel. As the next stage, Krause and his colleagues at the IBP intend to test the window modules in situ, in the renovation of a real building: “In principle, they can be installed in many different types of building stock; we have decided to focus on multi-family residential housing dating from the 1950s.”

Dr.-Ing. Michael Krause | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/august/minimally-invasive-building-renovation.html

More articles from Architecture and Construction:

nachricht Smart buildings through innovative membrane roofs and façades
31.08.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Concrete from wood
05.07.2017 | Schweizerischer Nationalfonds SNF

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>