Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making window glass visible – but only to birds

09.10.2014

Ultraviolet patterns can make window glass visible to birds, thus preventing fatal collisions. However, it has now been shown that such windows are not likely to work for all species, but only for birds like small passerines, gulls and parrots, who have a special type of colour vision. For birds of prey, geese, pigeons and crows, these patterns should be difficult to detect. These conclusions appear today in an article by Olle Håstad and Anders Ödeen in PeerJ.


Sky reflected in the windows of a high-rise building in central Gothenburg, Sweden.

Photo: Anders Ödeen

Billions of birds are killed in window collisions every year. This is one of the most important human sources of avian mortality. A popular and effective remedy is to apply stickers showing the silhouettes of birds of prey to windows. Birds avoid colliding with these stickers but one problem remains: that the birds collide with the glass in between the stickers instead. To avoid having to cover whole windows with stickers, glass must be made visible to birds in some other, and less obtrusive, way.

As most birds can see ultraviolet light, which is invisible to humans, one solution is to mark the glass with ultraviolet reflective or absorbing patterns. Glass panes containing such ultraviolet absorbing patterns are currently commercially available. Elegant as this remedy may seem at first glance, field tests of UV-marked window panes have yielded mixed results. In a study published on October 9 in the open access journal PeerJ, Dr Olle Håstad at the Swedish University of Agricultural Sciences and Dr Anders Ödeen at Uppsala University show that ultraviolet window markings indeed have the potential to be effective deterrents. However, since birds differ strongly in how well they see ultraviolet light, the markings should only be visible to those bird species that have the right type of colour vision.

Håstad and Ödeen calculated how visible ultraviolet anti-collision markings are by using a physiological model of avian colour vision. They conclude that ultraviolet markings may be clearly visible under a range of lighting conditions, but only to birds with the so called UVS type of ultraviolet vision. Such birds include for example many small perching birds, gulls and parrots.

To species with the other (VS) type of colour vision, such as birds of prey, geese and ducks, pigeons and crows, ultraviolet markings should not be visible under most practical circumstances. To be visible to these birds, the patterns would have to produce virtually perfect contrasts and be viewed against a scene with low colour variation but a high ultraviolet content, such as a clear blue sky.

The article:
Olle Håstad & Anders Ödeen. 2014. A vision physiological estimation of ultraviolet window marking visibility to birds. PeerJ 2:e621.

Image: Sky reflected in the windows of a high-rise building in central Gothenburg, Sweden. Photo: Anders Ödeen

Press image (may be published without charge in articles about these findings, please acknowledge the photographer)

Contact:
Olle Håstad, PhD
Dept of Anatomy, Physiology and Biochemistry
Swedish University of Agricultural Sciences, Uppsala, Sweden
+46 (0)70 810 64 73, olle.hastad@slu.se

Pressofficer: David Stephansson: +46-725 11 69 90 or David.Stephansson@slu.se

Weitere Informationen:

https://peerj.com/articles/621/ article

Ingemar Björklund | idw - Informationsdienst Wissenschaft

More articles from Architecture and Construction:

nachricht Flexible protection for "smart" building and façade components
30.11.2016 | Fraunhofer-Institut für Silicatforschung ISC

nachricht Healthy living without damp and mold
16.11.2016 | Fraunhofer-Gesellschaft

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>