Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long Carbon Fibers Could Improve Blast Resistance of Concrete Structures

22.10.2009
Dr. Jeffery Volz, assistant professor of civil, architectural and environmental engineering at Missouri University of Science and Technology, and his team have received $567,000 to explore how adding carbon fibers could improve the blast and impact resistance of conventional reinforced concrete. The research is funded by the through a cooperative agreement with the Leonard Wood Institute.

Reinforcing concrete with fibers isn’t a new idea, Volz says. The Roman Empire used hair and straw in their concrete structures and Egyptians mixed straw in clay to make harder bricks. Today short carbon fibers – measuring no more than 1.5 inches – are found in buildings, bridges and slabs to limit the size of cracks. But in the future, Volz says the carbon fibers could be up to 6 inches in length, significantly improving a structure’s ability to withstand blasts, hurricanes and other natural disasters.

“The long fibers will absorb more energy as they pull-out during the pressure wave or impact, cutting down on the potential for failure during an explosion or earthquake,” Volz explains. “The fibers will also significantly diminish secondary fragmentation, reducing one of the leading causes of damage to surrounding personnel and materials. First responders will be able to get to the scene faster because they won’t have to clear chunks of concrete out of their way.”

Previous efforts by other researchers to incorporate longer carbon fibers have failed for two reasons. First, longer carbon fibers are more likely to ball up as the concrete is mixed. Second, it’s difficult to disperse the carbon fibers throughout the concrete.

Coating the fibers can reduce the fibers tendency to form into a ball. The team plans to study a variety of formulas to find a coating that balances between flexibility and rigidity. “A delicate balancing act is required between allowing the fibers to flow easily during mixing yet bond sufficiently with the concrete matrix in the hardened state,” Volz says.

In addition, the team plans to study how a negative electric charge, applied to a polymer coating, could force the fibers to disperse more uniformly during mixing.

Mindy Limback | Newswise Science News
Further information:
http://www.mst.edu

More articles from Architecture and Construction:

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

nachricht Designing Architecture with Solar Building Envelopes
16.01.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>