Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leaky water pipes problem solved by Sheffield engineers

06.08.2012
Leaky pipes are a common problem for the water industry: according to UK regulator, Ofwat, between 20 and 40 per cent of the UK's total water supply can be lost through damaged pipes. Developing more accurate ways of finding leaks would enable water companies to save revenue and reduce their environmental impact.

The system invented at Sheffield tests pipes by transmitting a pressure wave along them that sends back a signal if it passes any unexpected features, such as a leak or a crack in the pipe's surface.

The pressure wave is generated by a valve fitted to an ordinary water hydrant, which is opened and closed rapidly. The wave sends back a reflection, or a signal, if it encounters any anomalous features in the pipe. The strength of that signal can then be analysed to determine the location and the size of the leak.

Originally created by a team led by Professor Stephen Beck in the University's Department of Mechanical Engineering, the invention was developed into a prototype device in partnership with colleagues in the Department of Civil and Structural Engineering, and UK water company, Yorkshire Water.

The device has now been trialled at Yorkshire Water's field operators training site in Bradford, UK and results show that it offers a reliable and accurate method of leak testing. Leaks in cast iron pipes were located accurately to within one metre, while leaks in plastic pipes were located even more precisely, to within 20cm. The results of the trial are published today (6 August 2012) in a paper entitled, 'On site leak location in a pipe network by cepstrum analysis of pressure transients', in the Journal - American Water Works Association.

Existing leak detection techniques rely on acoustic sensing with microphones commonly used to identify noise generated by pressurised water escaping from the pipe. This method, however, is time consuming and prone to errors: the use of plastic pipes, for example, means that the sound can fall away quickly, making detection very difficult.

In contrast the device invented by the Sheffield team uses a series of calculations based on the size of the pipe, the speed of the pressure wave, and the distance it has to travel. The device can be calibrated to get the most accurate results and all the data is analysed on site, delivering immediate results that can be prioritised for action.

Dr James Shucksmith, in the Department of Civil and Structural Engineering at the University of Sheffield, who led the trial, says: "We are very excited by the results we've achieved so far: we are able to identify the location of leaks much more accurately and rapidly than existing systems are able to, meaning water companies will be able to save both time and money in carrying out repairs.

"The system has delivered some very promising results at Yorkshire Water. We hope now to find an industrial partner to develop the device to the point where it can be manufactured commercially"

Dr Allyson Seth, Networks Analytics Manager at Yorkshire Water comments: "Driving down leakage on our 31,000km network of water pipes is a high priority for us.

"Over the last 12 months alone, we've targeted leakage reduction and as a result we're currently recording our lowest ever levels of leakage.

"But we want to do more, which is why, in addition to the existing technologies we use, we're looking at new ways to help us to reduce leakage.

"Our work with engineers at the University of Sheffield is the latest example of this, and we look forward to working with them going forward to build on what has been achieved so far."

Jo Kelly | EurekAlert!
Further information:
http://www.shef.ac.uk/

More articles from Architecture and Construction:

nachricht NEST: building of the future is up and running
23.05.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Designing buildings with a positive energy balance
18.03.2016 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

11 million Euros for research into magnetic field sensors for medical diagnostics

27.05.2016 | Awards Funding

Fungi – a promising source of chemical diversity

27.05.2016 | Life Sciences

New Model of T Cell Activation

27.05.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>