Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


INM working with Namibia to develop sustainable building materials from natural resources


Researchers from the Saarland and Africa will be developing adhesives obtained from natural resources and using them to produce sustainable building materials.

The INM – Leibniz Institute for New Materials is starting out on a joint pilot project with Namibia. Researchers from the Saarland and Africa will be developing adhesives obtained from natural resources and using them to produce sustainable building materials. The NaMiBIND project is scheduled to run for two years and the Federal Ministry of Education and Research (BMBF) is providing sponsorship to the tune of around 250,000 euros.

Namibia has acacias and sand in abundance. Acacia mellifera and Dichrostachys cinerea in particular change the biodiversity of plants and animals by bush encroachment, and in doing so pose a threat to entire ecosystems. In order to halt their growth, the shrubs have up to now simply been cut down and used as fuel.

The INM, in partnership with the UNAM University and Polytechnic of Namibia along with the Namibian Business & Innovation Centre (NBIC), is keen to find a way to use the proliferous bushes in the form of ecologically certified basic wood materials as sustainable building materials. Their aim in this is to use sand from Namibia’s desert and the natural ingredients in acacias as components of an adhesive that they can combine with the acacia wood to produce simple construction panels similar to chipboard.

The sale of these materials in Africa and exports will at the same time provide a boost for economic prosperity in Africa, and means that sand and scrub will remain in a cycle that is both sustainable and environmentally friendly, beneficial to the economy and socially acceptable, according to Rainer Hanselmann, Head of Sales at the INM.

“Typical binders used today for wood chipboards are composed of industrial polymers and resins, some of which are highly flammable”, explains Ingrid Weiss, Head of the Biomineralization Program Division. In her opinion, “the development of alternative binders made from inorganic precursors based on INM technology will pave the way for manufacturing materials that are highly heat-resistant, water-repellent and antimicrobicidal. But for economic purposes this technology is far too expensive”.

“As the basis of our new "Namib" binder, we will be using sand directly from the desert and first of all turn it into glass using simple, proven processes with potassium carbonate”, says the biologist. “This glass is then powdered and converted to a “water glass suspension”. Other components, such as certain hydrocarbons, would be provided by the acacias themselves. And this is the point where the new development in the sustainable process kicks in.

There are a number of varieties of acacia bushes in Namibia, including Acacia mellifera, Acacia reficiens, Dichrostachys cinerea, Colophospermum mopane, Terminalia sericea and Rhigozum trichotomum. “In order to be able to use these as building materials and binders, we need to analyse them systematically and first of all establish which components, for example rubber, phenolic resins or lignin, they contain and how – carefully extracted and combined – they could be suitable for flame-resistant and durable building materials”, explains expert Ingrid Weiss.

“Plants contain a wide variety of species-specific natural substances, the use of which has not up to now been explored. Working closely with our African colleagues and junior scientists, we can provide input by tapping into the variety and complexity of these natural substances. Because only then can locally unique and ecologically significant value chains be generated in the long term.”

Until now, physical and chemical data on a project such as this has not been available. “We regard NaMiBIND as a pilot study which, if successful, can be translated to other regions and other types of wood”, sums up the expert on biomineralization. Ultimately, natural building materials are a key element in sustainability across the globe for keeping raw materials in an ecological economic cycle. 


“Natural and Mineral-based Binders for the ecological building material Industry” (NaMiBIND) has been nominated by the BMBF as part of the “Partnerships for sustainable solutions with Sub-Saharan Africa” promotion as one of the first projects of its type with outstanding recovery potential. It is scheduled to run for two years, with funding of 250,000 euros. NaMiBIND is a cooperative venture involving the Biomineralization Program Division of the INM – Leibniz Institute for New Materials and the UNAM University and Polytechnic of Namibia, along with the Namibian Business & Innovation Centre (NBIC). 

Dr. Ingrid Weiss
INM – Leibniz Institute for New Materials
Head of Biomineralization
Phone: +490681-9300-318

INM conducts research and development to create new materials – for today, tomorrow and beyond. Chemists, physicists, biologists, materials scientists and engineers team up to focus on these essential questions: Which material properties are new, how can they be investigated and how can they be tailored for industrial applications in the future? Four research thrusts determine the current developments at INM: New materials for energy application, new concepts for medical surfaces, new surface materials for tribological applications and nano safety and nano bio. Research at INM is performed in three fields: Nanocomposite Technology, Interface Materials, and Bio Interfaces.

INM – Leibniz Institute for New Materials, situated in Saarbruecken, is an internationally leading centre for materials research. It is an institute of the Leibniz Association and has about 195 employees.

Weitere Informationen:

Dr. Carola Jung | idw - Informationsdienst Wissenschaft

More articles from Architecture and Construction:

nachricht Rock solid: Carbon-reinforced concrete from Augsburg
11.10.2016 | Universität Augsburg

nachricht Heating and cooling with environmental energy
22.09.2016 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>