Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

INM working with Namibia to develop sustainable building materials from natural resources

13.03.2014

Researchers from the Saarland and Africa will be developing adhesives obtained from natural resources and using them to produce sustainable building materials.

The INM – Leibniz Institute for New Materials is starting out on a joint pilot project with Namibia. Researchers from the Saarland and Africa will be developing adhesives obtained from natural resources and using them to produce sustainable building materials. The NaMiBIND project is scheduled to run for two years and the Federal Ministry of Education and Research (BMBF) is providing sponsorship to the tune of around 250,000 euros.

Namibia has acacias and sand in abundance. Acacia mellifera and Dichrostachys cinerea in particular change the biodiversity of plants and animals by bush encroachment, and in doing so pose a threat to entire ecosystems. In order to halt their growth, the shrubs have up to now simply been cut down and used as fuel.

The INM, in partnership with the UNAM University and Polytechnic of Namibia along with the Namibian Business & Innovation Centre (NBIC), is keen to find a way to use the proliferous bushes in the form of ecologically certified basic wood materials as sustainable building materials. Their aim in this is to use sand from Namibia’s desert and the natural ingredients in acacias as components of an adhesive that they can combine with the acacia wood to produce simple construction panels similar to chipboard.

The sale of these materials in Africa and exports will at the same time provide a boost for economic prosperity in Africa, and means that sand and scrub will remain in a cycle that is both sustainable and environmentally friendly, beneficial to the economy and socially acceptable, according to Rainer Hanselmann, Head of Sales at the INM.

“Typical binders used today for wood chipboards are composed of industrial polymers and resins, some of which are highly flammable”, explains Ingrid Weiss, Head of the Biomineralization Program Division. In her opinion, “the development of alternative binders made from inorganic precursors based on INM technology will pave the way for manufacturing materials that are highly heat-resistant, water-repellent and antimicrobicidal. But for economic purposes this technology is far too expensive”.

“As the basis of our new "Namib" binder, we will be using sand directly from the desert and first of all turn it into glass using simple, proven processes with potassium carbonate”, says the biologist. “This glass is then powdered and converted to a “water glass suspension”. Other components, such as certain hydrocarbons, would be provided by the acacias themselves. And this is the point where the new development in the sustainable process kicks in.

There are a number of varieties of acacia bushes in Namibia, including Acacia mellifera, Acacia reficiens, Dichrostachys cinerea, Colophospermum mopane, Terminalia sericea and Rhigozum trichotomum. “In order to be able to use these as building materials and binders, we need to analyse them systematically and first of all establish which components, for example rubber, phenolic resins or lignin, they contain and how – carefully extracted and combined – they could be suitable for flame-resistant and durable building materials”, explains expert Ingrid Weiss.

“Plants contain a wide variety of species-specific natural substances, the use of which has not up to now been explored. Working closely with our African colleagues and junior scientists, we can provide input by tapping into the variety and complexity of these natural substances. Because only then can locally unique and ecologically significant value chains be generated in the long term.”

Until now, physical and chemical data on a project such as this has not been available. “We regard NaMiBIND as a pilot study which, if successful, can be translated to other regions and other types of wood”, sums up the expert on biomineralization. Ultimately, natural building materials are a key element in sustainability across the globe for keeping raw materials in an ecological economic cycle. 

Background:

“Natural and Mineral-based Binders for the ecological building material Industry” (NaMiBIND) has been nominated by the BMBF as part of the “Partnerships for sustainable solutions with Sub-Saharan Africa” promotion as one of the first projects of its type with outstanding recovery potential. It is scheduled to run for two years, with funding of 250,000 euros. NaMiBIND is a cooperative venture involving the Biomineralization Program Division of the INM – Leibniz Institute for New Materials and the UNAM University and Polytechnic of Namibia, along with the Namibian Business & Innovation Centre (NBIC). 

Expert:
Dr. Ingrid Weiss
INM – Leibniz Institute for New Materials
Head of Biomineralization
Phone: +490681-9300-318

INM conducts research and development to create new materials – for today, tomorrow and beyond. Chemists, physicists, biologists, materials scientists and engineers team up to focus on these essential questions: Which material properties are new, how can they be investigated and how can they be tailored for industrial applications in the future? Four research thrusts determine the current developments at INM: New materials for energy application, new concepts for medical surfaces, new surface materials for tribological applications and nano safety and nano bio. Research at INM is performed in three fields: Nanocomposite Technology, Interface Materials, and Bio Interfaces.

INM – Leibniz Institute for New Materials, situated in Saarbruecken, is an internationally leading centre for materials research. It is an institute of the Leibniz Association and has about 195 employees.

Weitere Informationen:

http://www.inm-gmbh.de/en/
http://www.leibniz-gemeinschaft.de/en/home/

Dr. Carola Jung | idw - Informationsdienst Wissenschaft

More articles from Architecture and Construction:

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>