Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving the stability of clay for construction

08.07.2014

This research focused on making soft clay more stable to facilitate construction. Researchers at the Universiti Teknologi MARA mixed clay with various waste materials to enhance its engineering quality.

This research set out to improve the engineering quality of clay using waste materials and a secret binder ingredient.


Copyright : wikimedia

Clay is a natural material composed primarily of fine-grain minerals. It consists of tiny particles that have plastic and adhesive properties. Clay also possesses small voids and pores, so it's capable of retaining water. In this condition, it tends to expand and shrink, which can lead to settlement.

When exposed to increments of water, clay tends to soften and liquefy. Clay often causes difficulties in construction with its low strength and stiffness. This has caused serious problems in geotechnical engineering because weak soil may cause damage to the foundation of buildings and cracks along the road pavement.

Due to the rapid growth development of infrastructures facilities in Malaysia, it is impossible to avoid constructing on clay. Clay makes up 20% of the total soils in Peninsular Malaysia. It can be found in the West and East Coast of Peninsular Malaysia. This type of soil is generally classified as marine clay. This clay originates from flooding during ancient times. The sedimentation of seabed was very thick and can be up to 60 metres in depth, or roughly the height of a 20 storey-building. Hence, the construction over clay may experience bearing capacity failure and excessive settlement.

Stabilization of soil using cementitious material becomes optional to solve this problem. Cementitious materials are several binding materials that may mix with water to form a plastic paste.

Ordinary Portland Cement (OPC) is used as a common cementitious binding agent. From a previous study, stabilization of soil using cement was one of the soil treatment applied to improve soil plasticity and workability. Therefore, this research focuses on determination of the strength that can be produced by using waste material ashes as part of the additive mixture.

This will decrease the use of Ordinary Portland Cement (OPC) to help stabilize clay. By doing this, more economical soil mixes can be produced.

The selected waste materials are bottom ash (BA) and fly ash (FA). They are a byproduct from electric power plant. These waste materials are disposed and generally have no economical value.

BA is physically coarse, porous, glassy, granular, greyish and incombustible materials that are collected from the bottom of furnaces that burned coal whereas FA is grey in colour and dust-like material.

It is found that they have pozzolonic properties which make it possible to replace cement in deep soil mixing. On top of that, a secret ingredient has been added to promote better pozzolonic reactions between the additives and clay.

This research was conducted for soil engineering properties and strength test for various inclusions of ashes into the clay soil. The percentage of additives is 5%, 10% and 15% of each ash. Improvement levels were evaluated from the results of unconfined compression test (UCT) carried out at different curing times.

Other soil characteristics like plasticity, particle density and compaction properties were also monitored.

The results showed that by using these admixtures, the strength development can be increased over time. This proved that these admixtures can be promising ingredients in deep soil mixing. By doing so, a high performance clay cement column can be produced in the near future.

 Juhaizad Bin Ahmad
Institute of Infrastructure, Engineering & Sustainable Management (IIESM)
UiTM Shah Alam
Email : juhaizad@salam.uitm.edu.my

Darmarajah Nadarajah | Research SEA News
Further information:
http://inforec.uitm.edu.my
http://www.researchsea.com

Further reports about: Malaysia OPC UiTM construction materials plastic plasticity waste materials

More articles from Architecture and Construction:

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

nachricht Designing Architecture with Solar Building Envelopes
16.01.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>