Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An important aspect of structural design of super-tall buildings and structures

31.10.2011
Across-wind loads and effects have become increasingly important factors in the structural design of super-tall buildings and structures with increasing height.

Although researchers have investigated the problem for over 30 years now, the research achievements of across-wind loads and effects and the computation methods of equivalent static wind loads are still not satisfactory.

Professor GU Ming and his group from the State Key Laboratory of Disaster Reduction in Civil Engineering set out to tackle this problem. After more than 10 years of innovative research, they have obtained many results for across-wind loads on super-tall buildings and structures with various cross-sections and developed new methods for determining across-wind aerodynamic damping and across-wind equivalent static wind loads. These achievements have been adopted in national and local load codes and have been applied to the structural design of a large number of actual super-tall buildings and structures. Their work, entitled "Across-wind loads and effects of super-tall buildings and structures", was published in Science China Technological Sciences.

Professor GU Ming and his group have performed a series of wind tunnel tests on models of typical tall buildings and structures for across-wind forces employing a wind pressure scanning technique and high-frequency force balance technique. There were a total of 121 general building models and dozens of real tall structure models. Twenty-five building models for wind pressure tests and 96 building models for direct measurements of wind forces were sampled employing the high-frequency force balance technique. The models had different cross-section shapes, namely a square, rectangular, triangle, Y shape, polygon, L shape, corner-modified square, ladder shape, twin-tower shape, and a shape with a continuously contracting cross section.

Formulas for across-wind aerodynamic forces were derived for practical use from many experimental results obtained in wind tunnel tests. As an example, a unified formula for the non-dimensional power spectra density of the across-wind force acting on rectangular buildings and square buildings with corner modifications was derived. The formula has better features than previous formulas.

Aeroelastic models were used to investigate the aerodynamic damping characteristics of buildings. A base for supporting the aeroelastic models of tall buildings was specially designed for the tests. The frequency, mass distribution, and damping of the aeroelastic models could be easily adjusted for parametric study. Three series of buildings, namely rectangular buildings, corner-modified square buildings, and buildings with continuously contracting cross sections, were modeled and tested under four categories of terrain conditions in the TJ-1 Boundary Layer Wind Tunnel at Tongji University. The effects of the cross-section shape and dynamic parameter of buildings as well as the terrain condition on the aerodynamic damping were thoroughly investigated. The time-averaging method of the random-decrease technique and the stochastic sub-space identification method were adopted in the current study to identify the aerodynamic damping ratio. On the basis of testing results and analyses, a formula for the aerodynamic damping ratio of a square building was derived for practical purposes.

A new method of determining the across-wind equivalent static wind load was also developed. The across-wind equivalent static wind load was firstly divided into mean, resonant and background components for separate computation, and these components were combined as the total equivalent static wind load. The resonant component is equal to the inertial force due to vibration of the structure and the background component is essentially the base-moment-based equivalent static wind load.

Since there is no corresponding guidance in the present Chinese code, the across-wind loads and responses have not been considered by structural engineers for many super-tall buildings and structures. As an important application, the above new formulas and methods have been adopted in the national code of China and a local load code and have also been directly applied to the structural design of many super-tall buildings and structures.

The recent trend of constructing higher buildings and structures implies that wind engineering researchers will face new challenges, even problems they are currently unaware of. Therefore, there needs to be more effort to resolve engineering design problems and to further the development of wind engineering.

see the article: GU Ming, Quan Yong. Across-wind loads and effects of super-tall buildings and structures. SCIENCE CHINA Technological Science, 2011, 54(10)

Gu Ming | EurekAlert!
Further information:
http://www.tongji.edu.cn

More articles from Architecture and Construction:

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

nachricht Designing Architecture with Solar Building Envelopes
16.01.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>