Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How highway bridges sing – or groan – in the rain to reveal their health

23.10.2012
Just a drop of water can indicate the stability of a bridge
A team of BYU engineers has found that by listening to how a highway bridge sings in the rain they can determine serious flaws in the structure.

Employing a method called impact-echo testing, professors Brian Mazzeo and Spencer Guthrie can diagnose the health of a bridge’s deck based on the acoustic footprint produced by a little bit of water.

Specifically, the sound created when a droplet makes impact can reveal hidden dangers in the bridge.

“There is a difference between water hitting intact structures and water hitting flawed structures,” Mazzeo said. “We can detect things you can’t see with a visual inspection; things happening within the bridge itself.”

The study presents a more efficient and cost-effective method to address the mounting safety concerns over bridge corrosion and aging across the U.S. and beyond.

While impact-echo testing for bridges is nothing new to engineers, the BYU researchers are the first to use water droplets to produce acoustic responses. Current testing relies on solid objects such as hammers and chains.

The idea is to detect delamination, or the separation of structural layers, in a concrete bridge deck. The most common method involves dragging a chain over a bridge and marking spots where dull, hollow sound is produced.

However, this method can take hours to carry out for a single bridge and requires lane closures that come with additional complications.

“The infrastructure in the U.S. is aging, and there’s a lot of work that needs to be done," Guthrie said. "We need to be able to rapidly assess bridge decks so we can understand the extent of deterioration and apply the right treatment at the right time.”

The study results, published in the October issue of Non-Destructive Testing and Evaluation International, could help transform deck surveys into rapid, automated and cost efficient exercises.

The method is as simple as dropping droplets of water on the material and recording the sound. The acoustic response indicates the health of the concrete.

“The response gives you an indication of both the size and the depth of the flaw,” Mazzeo said.

Mazzeo said the method could be used to test materials beyond bridges, including aircraft composites, which are susceptible to delamination.

Though the current research is preliminary, the researchers envision a day where bridge deck surveys would take only a few moments.

“We would love to be able to drive over a bridge at 25 or 30 mph, spray it with water while we’re driving and be able to detect all the structural flaws on the bridge,” Mazzeo said. “We think there is a huge opportunity, but we need to keep improving on the physics.”

Todd Hollingshead | EurekAlert!
Further information:
http://www.byu.edu
http://news.byu.edu/archive12-oct-bridgesrain.aspx

More articles from Architecture and Construction:

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>