Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Heat-resistant adhesive for building work

18.01.2010
The “Parasols” in Seville feature components that are designed to be glued instead of bolted together. To prevent the adhesive from melting, it needs to withstand temperatures of up to 60 degrees. Researchers have optimized the adhesive's resistance to high temperatures.

The Metropol Parasols will be the new centerpiece of Plaza de la Encarnación in Seville. As well as being an eye-catching work of art, the mushroom-like structures are also playing host to some pioneering construction techniques, with even the load-bearing structural components consisting of finely-wrought laminated veneer lumber beams.

With mechanical joining methods ruled out for structural reasons, the beams are instead joined together by means of glued-in threaded rods. However, the high temperatures and relentless sunshine of a typical Seville summer could pose a significant challenge to the adhesive, in the worse-case it loses its ability to hold the components together.

The type of adhesive used in Seville is designed to withstand temperatures of up to 60 degrees, so researchers from the Fraunhofer Institute for Wood Research WKI have been working on behalf of the building inspection authorities to determine how close the thermal load is likely to come to this limit. “We ascertained the temperatures that might occur at the site and used simulations to determine the temperature this would trigger within the construction materials,” explains Dirk Kruse, head of department at WKI. “Our results revealed that the temperatures in the adhesive could potentially reach almost 60 degrees, which is obviously too close to the limit for comfort.” Subsequent tests carried out on three specimen components in a climate chamber confirmed their findings, giving rise to a stark choice: either the adhesive would have to be improved, or the building inspection authorities would be forced to bring building work to a halt. Fortunately, there is a method of improving the adhesive's resistance to high temperatures, namely by “tempering” the structural components: “Once the components have been glued in place, they are heated up again,” Kruse continues. “This causes post-curing reactions to occur.” And the result? The adhesive is less likely to take on a liquid form and maintains its stability up to a temperature of 70 degrees. This gives a safety margin over and above the thermal stress that is actually expected to occur, which means that the building work can now be continued as planned and Seville will soon be featuring a brand new landmark.

“These are the kinds of solutions that will help to firmly anchor adhesive technology within the building industry,” Kruse states. While adhesive bonding is widely used in the aircraft industry, the use of adhesion for structural applications in the building industry is still in its infancy. Yet the method opens up a whole new wealth of possibilities for architects.

Dirk Kruse | Fraunhofer Gesellschaft
Further information:
http://www.fraunhofer.de
http://www.fraunhofer.de/en/press/research-news/2010/january/heat-resitant-adhesive.jsp

More articles from Architecture and Construction:

nachricht Concrete from wood
05.07.2017 | Schweizerischer Nationalfonds SNF

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>