Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers help secure California highways and roads

17.12.2009
Sprays of dirt flew out of a soil box that held a retaining wall as it violently shook from a simulated 7.4 magnitude earthquake.

The wall was put to test recently by engineers at the UC San Diego Englekirk Structural Engineering Center, which has the largest outdoor shake table in the United States. During the first series of tests, led by Dawn Cheng, a UCSD engineering alumna and now a civil engineering professor at UC Davis, researchers investigated the seismic response of a semi-gravity reinforced concrete cantilever wall.

California has thousands of miles of these types of retaining walls on highways, roads, bridges and oceanside bluffs that have withstood earthquakes in the past. However, the seismic design of these walls has not been extensively developed. The outcome of this research, funded by Caltrans, will ensure that future retaining wall systems are designed to a higher performance standard and existing systems are upgraded and retrofitted to offer satisfactory performance to provide a safe and mobile transportation system in California.

Retaining walls – mostly made of concrete and steel – are normally used to support traffic loads and to create more of an abrupt change in elevation than a slope typically can. The main objective is trying to come up with a better understanding by observing how these structures behave and what kind of failure we can expect during an earthquake and to obtain some of the performance data so we can come up with better analytical models and design guideline methodologies,” Cheng said. “We also want to look at the behavior of the structure when the soil is interacting with the system under earthquake shaking.”

During the series of shake tests, no significant damage was observed in the retaining walls themselves, but the sound wall during the second set of tests had severe cracking near the bottom section, Cheng observed.

“A lot of the sound walls are connected to the retailing walls. The design of that is critical because you are handling a bigger structure. The behavior is different,” she said. “A lot of the retaining walls are supporting the sound walls in the field on the highways and overpasses. The performance under a dynamic earthquake is different when you have a sound wall on top because of the additional mass that changes the weight and stiffness of the system. In an earthquake you have to take that into account during the design process.”

This project is unique, Cheng said, because it is the first comprehensive system level earthquake simulation test of a full-scale interactive soil-retaining wall structure supporting a sound wall.

“UC San Diego has one of largest and most unique testing facilities in the world,” she said. “The Englekirk Center has all the state-of-the-art testing facilities and there is a lot of technical support. The other reason this site was unique is because it has a large Caltrans funded laminar soil box and a soil pit on the site. UCSD is also the place where I did my Ph.D. research".

The research performed by Cheng and her colleagues will give Caltrans the opportunity to check its current retaining wall designs and input any necessary changes, according to Kathryn Griswell, ERS Specialist for Caltrans’ Office of Design & Technical Services. “This is a brand new modification and it’s time to find out how it behaves under an earthquake,” Griswell said. “These types of walls rarely fall down and cause hazards or loss of lives or other safety issues. Normally what we have to deal with are maintenance issues and costly repairs from earthquakes, so we’re looking to modify the designs whenever necessary to keep costs down.”

Andrea Siedsma | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Architecture and Construction:

nachricht Construction Impact Guide
18.05.2018 | Hochschule RheinMain

nachricht New, forward-looking report outlines research path to sustainable cities
24.01.2018 | National Science Foundation

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>