Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers help secure California highways and roads

17.12.2009
Sprays of dirt flew out of a soil box that held a retaining wall as it violently shook from a simulated 7.4 magnitude earthquake.

The wall was put to test recently by engineers at the UC San Diego Englekirk Structural Engineering Center, which has the largest outdoor shake table in the United States. During the first series of tests, led by Dawn Cheng, a UCSD engineering alumna and now a civil engineering professor at UC Davis, researchers investigated the seismic response of a semi-gravity reinforced concrete cantilever wall.

California has thousands of miles of these types of retaining walls on highways, roads, bridges and oceanside bluffs that have withstood earthquakes in the past. However, the seismic design of these walls has not been extensively developed. The outcome of this research, funded by Caltrans, will ensure that future retaining wall systems are designed to a higher performance standard and existing systems are upgraded and retrofitted to offer satisfactory performance to provide a safe and mobile transportation system in California.

Retaining walls – mostly made of concrete and steel – are normally used to support traffic loads and to create more of an abrupt change in elevation than a slope typically can. The main objective is trying to come up with a better understanding by observing how these structures behave and what kind of failure we can expect during an earthquake and to obtain some of the performance data so we can come up with better analytical models and design guideline methodologies,” Cheng said. “We also want to look at the behavior of the structure when the soil is interacting with the system under earthquake shaking.”

During the series of shake tests, no significant damage was observed in the retaining walls themselves, but the sound wall during the second set of tests had severe cracking near the bottom section, Cheng observed.

“A lot of the sound walls are connected to the retailing walls. The design of that is critical because you are handling a bigger structure. The behavior is different,” she said. “A lot of the retaining walls are supporting the sound walls in the field on the highways and overpasses. The performance under a dynamic earthquake is different when you have a sound wall on top because of the additional mass that changes the weight and stiffness of the system. In an earthquake you have to take that into account during the design process.”

This project is unique, Cheng said, because it is the first comprehensive system level earthquake simulation test of a full-scale interactive soil-retaining wall structure supporting a sound wall.

“UC San Diego has one of largest and most unique testing facilities in the world,” she said. “The Englekirk Center has all the state-of-the-art testing facilities and there is a lot of technical support. The other reason this site was unique is because it has a large Caltrans funded laminar soil box and a soil pit on the site. UCSD is also the place where I did my Ph.D. research".

The research performed by Cheng and her colleagues will give Caltrans the opportunity to check its current retaining wall designs and input any necessary changes, according to Kathryn Griswell, ERS Specialist for Caltrans’ Office of Design & Technical Services. “This is a brand new modification and it’s time to find out how it behaves under an earthquake,” Griswell said. “These types of walls rarely fall down and cause hazards or loss of lives or other safety issues. Normally what we have to deal with are maintenance issues and costly repairs from earthquakes, so we’re looking to modify the designs whenever necessary to keep costs down.”

Andrea Siedsma | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Architecture and Construction:

nachricht Smart buildings through innovative membrane roofs and façades
31.08.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Concrete from wood
05.07.2017 | Schweizerischer Nationalfonds SNF

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>