Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers help secure California highways and roads

17.12.2009
Sprays of dirt flew out of a soil box that held a retaining wall as it violently shook from a simulated 7.4 magnitude earthquake.

The wall was put to test recently by engineers at the UC San Diego Englekirk Structural Engineering Center, which has the largest outdoor shake table in the United States. During the first series of tests, led by Dawn Cheng, a UCSD engineering alumna and now a civil engineering professor at UC Davis, researchers investigated the seismic response of a semi-gravity reinforced concrete cantilever wall.

California has thousands of miles of these types of retaining walls on highways, roads, bridges and oceanside bluffs that have withstood earthquakes in the past. However, the seismic design of these walls has not been extensively developed. The outcome of this research, funded by Caltrans, will ensure that future retaining wall systems are designed to a higher performance standard and existing systems are upgraded and retrofitted to offer satisfactory performance to provide a safe and mobile transportation system in California.

Retaining walls – mostly made of concrete and steel – are normally used to support traffic loads and to create more of an abrupt change in elevation than a slope typically can. The main objective is trying to come up with a better understanding by observing how these structures behave and what kind of failure we can expect during an earthquake and to obtain some of the performance data so we can come up with better analytical models and design guideline methodologies,” Cheng said. “We also want to look at the behavior of the structure when the soil is interacting with the system under earthquake shaking.”

During the series of shake tests, no significant damage was observed in the retaining walls themselves, but the sound wall during the second set of tests had severe cracking near the bottom section, Cheng observed.

“A lot of the sound walls are connected to the retailing walls. The design of that is critical because you are handling a bigger structure. The behavior is different,” she said. “A lot of the retaining walls are supporting the sound walls in the field on the highways and overpasses. The performance under a dynamic earthquake is different when you have a sound wall on top because of the additional mass that changes the weight and stiffness of the system. In an earthquake you have to take that into account during the design process.”

This project is unique, Cheng said, because it is the first comprehensive system level earthquake simulation test of a full-scale interactive soil-retaining wall structure supporting a sound wall.

“UC San Diego has one of largest and most unique testing facilities in the world,” she said. “The Englekirk Center has all the state-of-the-art testing facilities and there is a lot of technical support. The other reason this site was unique is because it has a large Caltrans funded laminar soil box and a soil pit on the site. UCSD is also the place where I did my Ph.D. research".

The research performed by Cheng and her colleagues will give Caltrans the opportunity to check its current retaining wall designs and input any necessary changes, according to Kathryn Griswell, ERS Specialist for Caltrans’ Office of Design & Technical Services. “This is a brand new modification and it’s time to find out how it behaves under an earthquake,” Griswell said. “These types of walls rarely fall down and cause hazards or loss of lives or other safety issues. Normally what we have to deal with are maintenance issues and costly repairs from earthquakes, so we’re looking to modify the designs whenever necessary to keep costs down.”

Andrea Siedsma | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Architecture and Construction:

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

nachricht Designing Architecture with Solar Building Envelopes
16.01.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>