Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers Part of Nationwide Effort to Make Buildings Earthquake Safe

26.08.2008
Engineering researchers from UC San Diego and the University of Arizona have concluded three months of rigorous earthquake simulation tests on a half-scale three-story structure, and will now begin sifting through their results so they can be used in the future designs of buildings across the nation.

The structure, which resembled a parking garage, went through a series of earthquake jolts as powerful as magnitude 8.0. The one-million pound precast concrete structure had the largest footprint of any structure ever tested on a shake table in the United States.

The earthquake tests were conducted at the UC San Diego Jacobs School of Engineering’s Englekirk Structural Engineering Center, which is about eight miles east of the university’s main campus. The goal of the project was to test the seismic response of precast concrete floor systems used in structures such as parking garages, college dormitories, hotels, stadiums, prisons and office buildings.

“One of the purposes of our research is to develop better designs for precast concrete buildings,” said Jose Restrepo, co principal investigator of the project and a structural engineering professor at UC San Diego’s Jacobs School of Engineering. “The results of our research have been tremendous.”

Precast concrete, which is built in pieces and then put together to construct buildings, has been a breakthrough in the industry in terms of saving time, money and increasing durability. While precast concrete has proven to be a robust design material for structures, researchers are working to provide the industry with new methods of connecting these pieces more efficiently.

“This is really important to our industry because we’ll be able to develop structures that can resist nature’s most difficult loads, including earthquakes,” said Tom D’Arcy, spokesman for the Precast/Prestressed Institute and chairman of The Consulting Engineers Group, Inc.

The $2.3 million research project is a collaboration among UC San Diego, the University of Arizona and Lehigh University, and is funded by the Precast/Prestressed Concrete Institute and its member companies and organizations, the National Science Foundation, the Charles Pankow Foundation and the network for earthquake Engineering Simulation (NEES).

During the tests, the researchers simulated earthquakes for different regions of the country, including Berkeley, Calif.; Knoxville, Tenn; and Seattle, Wash.

“We conducted tests from lower seismicity all the way to higher seismicity and shook the building stronger and stronger each time with a higher intensity,” Restrepo said.

The results of the research are expected to be implemented into building codes across the United States within the next few years. The researchers and industry leaders hope that this project and others like it will help prevent the future failure of buildings, much like what happened during the 6.7 magnitude earthquake in Northridge, Calif. in 1994, with the collapse of several precast parking structures.

“Since that time, we have been working to come up with designs that will make these structures survive a Northridge earthquake or stronger,” said Robert Fleischman, principal investigator of the project and a civil engineering professor at the University of Arizona.

Seismic Simulation
Before the testing, the researchers performed computer simulations to help design the three-story structure and to determine where sensors should be placed on it.

The data recorded by the sensors were used to take measurements of certain physical phenomena on the structure such as displacements, strains, and accelerations caused by the shaking; and to estimate forces in the structure.

The data collected will also explain behavior of the structure during and after jolts,and will be used to compare directly to the simulations to either validate or adjust the computer models.

The use of these sensors, along with the computer simulation, may help lower costs of future seismic tests.

“We are only able to perform physical experiments on that one structure, but if we can show that our models capture important response properly, we can run hundreds of earthquake simulations a year for the cost of a graduate student, a fast computer and a software license, which, at around $50,000, is substantially less than the costs of these kinds of tests,” Fleischman said, adding that the researchers hope to have their first formal report on the seismic tests completed by early 2009.

The $9 million Englekirk shake table is one of 15 earthquake testing facilities for NEES. The UCSD-NEES shake table, the largest in the United States and the only outdoor shake table in the world, is ideally suited for testing tall, full-scale buildings.

“The Englekirk Center is very important to the research community and to the industry because it has an outdoor environment where we can perform large scale tests that can’t be done anywhere else in the world,” Restrepo said.

The recent seismic tests are an example of how the Jacobs School is on the forefront of the National Academy of Engineering’s Grand Challenges for Engineering in the 21st Century.

Andrea Siedsma | Newswise Science News
Further information:
http://www.soe.ucsd.edu

More articles from Architecture and Construction:

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>