Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Embracing the Elements: Weather-Sensitive Architecture

30.10.2009
Buildings typically provide shelter from the elements, but one Ryerson University researcher thinks structures ought to relate more to the environment instead. To this end she has created architectural “skins,” which interact with the weather to ultimately create environmental structures that integrate form with function.

An Associate Professor in Ryerson’s School of Interior Design, Filiz Klassen’s material innovations research in architecture has produced a series of building skins to create responsive structures which can be described as hot, cold, wet or dry. Examples include walls that reveal etched poems, create flashes of light, or that pulse with the pressure of wind, differences in temperature and lighting conditions or when subjected to rain.

By integrating weather elements into her innovative designs, Prof. Klassen is adding an entirely new dimension to architecture. It’s not just about aesthetics, but a building’s dynamic response to the elements. Integrating innovative textiles and building materials will also change a building’s environmental footprint by changing our attitudes and energy consumption. “Scientific research has produced materials that adjust to environmental conditions in different contexts,” explained Klassen.

In the future Prof. Klassen’s conceptual designs could help catapult Canada ahead in the field of sustainable, energy-conscious building design, helping architects visualize building skins that harness, transfer and release nature’s energy for better performance rather than solely relying on mechanical heating, cooling and artificial lighting.

Professor Klassen’s first set of conceptual prototypes and a feature film documenting the process will be exhibited at Design at Riverside, Cambridge Galleries, Cambridge, Ont from November 17 to January 3. Highlighting the connection between architecture and the physical environment, the show, Snow, Rain, Light, Wind: Weathering Architecture will feature a number of interactive textile installations including engravings that shimmer with accidental and ambient lighting; walls that change colour with the temperature; and fabrics that channel daylighting. The exhibition also incorporates lenticular photographs, and the showstopper, an exterior installation that covers part of the building façade across from the gallery.

“We spend so much time and energy warding off or protecting buildings against the elements that it takes an adjustment to embrace their full potential,” said Klassen. “I hope that my research can act as a catalyst to extend a language that is responsive to the climate in the architectural community in Toronto.”

Funding for Snow, Rain, Light, Wind: Weathering Architecture – and the four-year larger body of work, Malleable Matter – was provided by the Social Sciences and Humanities Research Council of Canada. To see further examples of Malleable Matter, visit http://www.ryerson.ca/malleablematter. For more information on the Snow, Rain, Light, Wind exhibition, visit http://www.cambridgegalleries.ca.

Ryerson University is Canada's leader in innovative career-focused education, offering close to 100 PhD, master's, and undergraduate programs in the Faculty of Arts; the Faculty of Communication & Design; the Faculty of Community Services; the Faculty of Engineering, Architecture and Science; and the Ted Rogers School of Management. Ryerson University has graduate and undergraduate enrolment of 25,000 students. With more than 68,000 registrations annually, The G. Raymond Chang School of Continuing Education is Canada's leading provider of university-based adult education.

Heather Kearney | Newswise Science News
Further information:
http://www.ryerson.ca

More articles from Architecture and Construction:

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

nachricht Designing Architecture with Solar Building Envelopes
16.01.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>