Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Embracing the Elements: Weather-Sensitive Architecture

30.10.2009
Buildings typically provide shelter from the elements, but one Ryerson University researcher thinks structures ought to relate more to the environment instead. To this end she has created architectural “skins,” which interact with the weather to ultimately create environmental structures that integrate form with function.

An Associate Professor in Ryerson’s School of Interior Design, Filiz Klassen’s material innovations research in architecture has produced a series of building skins to create responsive structures which can be described as hot, cold, wet or dry. Examples include walls that reveal etched poems, create flashes of light, or that pulse with the pressure of wind, differences in temperature and lighting conditions or when subjected to rain.

By integrating weather elements into her innovative designs, Prof. Klassen is adding an entirely new dimension to architecture. It’s not just about aesthetics, but a building’s dynamic response to the elements. Integrating innovative textiles and building materials will also change a building’s environmental footprint by changing our attitudes and energy consumption. “Scientific research has produced materials that adjust to environmental conditions in different contexts,” explained Klassen.

In the future Prof. Klassen’s conceptual designs could help catapult Canada ahead in the field of sustainable, energy-conscious building design, helping architects visualize building skins that harness, transfer and release nature’s energy for better performance rather than solely relying on mechanical heating, cooling and artificial lighting.

Professor Klassen’s first set of conceptual prototypes and a feature film documenting the process will be exhibited at Design at Riverside, Cambridge Galleries, Cambridge, Ont from November 17 to January 3. Highlighting the connection between architecture and the physical environment, the show, Snow, Rain, Light, Wind: Weathering Architecture will feature a number of interactive textile installations including engravings that shimmer with accidental and ambient lighting; walls that change colour with the temperature; and fabrics that channel daylighting. The exhibition also incorporates lenticular photographs, and the showstopper, an exterior installation that covers part of the building façade across from the gallery.

“We spend so much time and energy warding off or protecting buildings against the elements that it takes an adjustment to embrace their full potential,” said Klassen. “I hope that my research can act as a catalyst to extend a language that is responsive to the climate in the architectural community in Toronto.”

Funding for Snow, Rain, Light, Wind: Weathering Architecture – and the four-year larger body of work, Malleable Matter – was provided by the Social Sciences and Humanities Research Council of Canada. To see further examples of Malleable Matter, visit http://www.ryerson.ca/malleablematter. For more information on the Snow, Rain, Light, Wind exhibition, visit http://www.cambridgegalleries.ca.

Ryerson University is Canada's leader in innovative career-focused education, offering close to 100 PhD, master's, and undergraduate programs in the Faculty of Arts; the Faculty of Communication & Design; the Faculty of Community Services; the Faculty of Engineering, Architecture and Science; and the Ted Rogers School of Management. Ryerson University has graduate and undergraduate enrolment of 25,000 students. With more than 68,000 registrations annually, The G. Raymond Chang School of Continuing Education is Canada's leading provider of university-based adult education.

Heather Kearney | Newswise Science News
Further information:
http://www.ryerson.ca

More articles from Architecture and Construction:

nachricht Flexible protection for "smart" building and façade components
30.11.2016 | Fraunhofer-Institut für Silicatforschung ISC

nachricht Healthy living without damp and mold
16.11.2016 | Fraunhofer-Gesellschaft

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>