Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Elegant glass bridge at Portuguese research centre benefits from the high performance of DuPont™ SentryGlas® interlayer

04.03.2011
A visual highlight of the Champalimaud Foundation´s recently-completed biomedical research facility in Lisbon, Portugal is the lightweight steel and glass bridge that connects its two buildings.

The glass envelope encasing the bridge consists of curved panels of laminated glass made with DuPont™ SentryGlas® interlayer, specified by the structural engineers Schlaich Bergermann und Partner and the specialist contractor Bellapart on the basis of its decreased deflection and superior post breakage behaviour as compared to laminates made with PVB. Moreover, the proximity of the research facility to the sea meant that the excellent weathering and durability performance of laminates made with SentryGlas® were further criteria for their selection.


Photo (a): Bellapart
The two buildings at the ‘Champalimaud Centre for the Unknown’ are connected by a lightweight steel and glass bridge encased by curved panels of laminated glass made with DuPont™ SentryGlas® interlayer. The stiff and strong high-performance interlayer from DuPont was specified for the installation on the basis of its decreased deflection and superior post breakage behaviour as compared to laminates made with PVB.


Photo (b): Bellapart
The curved glass envelope for the bridge consists of several laminated glass panels, each typically measuring 1950x1320mm, which are held in place by four custom-designed clamp plates located at the glass vertices. Vertical steel rings positioned at every two meters along the envelope are used for its support.

The ‘Champalimaud Centre for the Unknown’ was designed by Charles Correa Associates of Mumbai, India, and comprises two buildings set in a large public area that accommodate treatment units, research laboratories, an auditorium and exhibition area as well as the offices of the Champalimaud Foundation itself. The buildings are connected by a 21-meter-long steel and glass bridge, implemented by Schlaich Bergermann und Partner of Stuttgart, Germany, Prof. Schneider from TU Darmstadt, Germany and Bellapart of Olot, Spain. The curved glass envelope for the bridge consists of several laminated glass panels, each typically measuring 1950x1320mm and produced by the Spanish laminator Cricursa using a comparatively lightweight construction of 8 mm tempered HST glass + 2.28 mm SentryGlas® interlayer + 8mm tempered HST glass. The panels are held in place by four custom-designed clamp plates from Bellapart, located at the glass vertices, whilst vertical steel rings positioned at every two meters along the envelope are used for its support.

Calculations by Schlaich Bergermann und Partner, carried out in partnership with Prof. Schneider of the TU Darmstadt, confirmed that in order to achieve a comparable rate of deflection in similarly-sized laminated glass panels using a PVB interlayer, glass thickness would need to be increased from 8+8 mm to 12+12 mm. Not only would this add significant weight to the installation, requiring a more substantial supporting structure, but it would also become difficult to achieve the required radius for the curved panels.

Familiar with SentryGlas® from previous projects, Bellapart repeated the glass load calculations for a laminated glass panel made with the DuPont interlayer to ensure compliance with safety requirements, as Carles Teixidor, industrial engineer at Bellapart explains: “Our own calculations verified the low rate of deflection of the laminated glass panels with SentryGlas®, below L/100 in the 8mm + 8mm construction, which is achieved despite exposure to quite high wind loads resulting from its geometry as well as its proximity to the sea. Moreover, the excellent post-breakage performance of laminated tempered glass with SentryGlas® in the event of failure of non-vertical installations was key: thanks to the high stiffness and limited creep of the interlayer, there is an extended period between the potential failure of the two glass components and the detachment of the panel from its fixings, enabling more time for its repair or replacement and limiting the potential for danger to passers-by.” With the bridge being installed just a few metres from the sea, the superior edge stability of SentryGlas® also came to the fore on the glass panels with open edges at either end of the bridge. “There was no weather seal used to protect these panels from the external environment, yet the outstanding edges stability of SentryGlas® will ensure that no appreciable edge delamination and no measurable moisture intrusion occurs,” confirms Carles Teixidor.

The ‘Champalimaud Centre for the Unknown’ is located on a 60,000m2 site in the Belém district of Lisbon, where the Tagus River flows into the Atlantic Ocean. Its location is of particular historical significance, being the place from where Portuguese pioneers set sail to discover the ‘unknown’ in the 15th and 16th centuries. The purpose of the multidisciplinary research centre is to leverage this historical heritage by creating a link between the discoveries of yesteryear and new scientific research in the fields of neurosciences and oncology. It was officially inaugurated on the 5th October 2010 by the President of the Republic of Portugal.

DuPont Glass Laminating Solutions provides materials, services and innovations to makers and specifiers of laminated glass. It helps create a better world by improving home protection and automotive safety, and enabling design of stronger, more energy-efficient buildings that let in more natural light.

DuPont is a science-based products and services company. Founded in 1802, DuPont puts science to work by creating sustainable solutions essential to a better, safer, healthier life for people everywhere. Operating in more than 90 countries, DuPont offers a wide range of innovative products and services for markets including agriculture and food; building and construction; communications; and transportation.

The DuPont Oval, DuPont™ and SentryGlas® are registered trademarks or trademarks of E. I. du Pont de Nemours and Company or its affiliates.

DuPont media contact:
Birgit Radlinger
Telephone: +49 6102 18-2638
Email: Birgit.Radlinger@dupont.com

Birgit Radlinger | DuPont
Further information:
http://www.dupont.com

More articles from Architecture and Construction:

nachricht New, forward-looking report outlines research path to sustainable cities
24.01.2018 | National Science Foundation

nachricht Magnetic liquids improve energy efficiency of buildings
16.01.2018 | Friedrich-Schiller-Universität Jena

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>