Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DuPont™ SentryGlas® combines strength and aesthetics to light up the landscape

30.08.2013
Designed to symbolise a crystal of sylvinite – a crucial ore used for the production of Potash – the new HQ for the Belarusian Potash Company (BPC) is a staggering example of glazing being deployed to maximise light and colour.

A combination of coloured fabric from Sefar and DuPont™ SentryGlas® have created and aesthetically pleasing and structurally robust glazing design that really stands out.


Photo: Glassbel

The new HQ for the Belarusian Potash Company (BPC) is a staggering example of glazing being deployed to maximise light and colour. The laminated glass panels incorporates Sefar® Architecture VISION 260/55 with 55% open space for the colour and texture effects and a DuPont™ SentryGlas® interlayer for structural strength.


Photo: Glassbel

The laminated glass panels deploy a SentryGlas® interlayer, which adds to the structural strength of the design, without additional weight or design compromises. In total the glass façade covers 2,850m2 and is applied on a steel skeleton covered by a stick-frame construction structural system.

Designed by Varabyeu Partners architects, the building comprises offices, meeting rooms, a 180-seat conference hall, a reception area and guest apartments. Employee facilities also include a 56-seat café an underground car park and a gym.

The building is formed from two wings joined at the centre the stylised red crystal, the idea being that the building looks like a bird when viewed from above. The wings are connected by a full-height atrium that joins the crystal entrance hall with a system of staircases and panoramic elevators. Each wing represents a gallery to create an air of comfort and calm.

The red crystal structure at the centre deploys Sefar® Architecture VISION 260/55 with 55% open space, which gives glass a textile-like structural quality. It is decorated with a reflective red aluminium metal coating on its exterior-facing side, reflecting the constantly changing climatic conditions around the building. While from the inside, the black fabric permits an almost uninhibited view of the outside world. The laminated glass panels deploy a SentryGlas® interlayer, which adds to the structural strength of the design, without additional weight or design compromises. In total the glass façade covers 2,850m2 and is applied on a steel skeleton covered by a stick-frame construction structural system.

D.Sc. Dmitri Sobolevski from GLASSBEL explains: "SentryGlas® is the material of future construction with its unique structural performance. Through numerous tests and trials GLASSBEL has achieved optimum ways of working with SentryGlas® and as a result, unique projects such as Belarusian Potash Company's office have been achieved. However GLASSBEL is finding further ways of using SenryGlas® and maximizing its performance."

According to Jérôme Lugrin from Sefar: "SentryGlas® and Sefar Architecture Vision work very well together to produce a strong yet aesthetically pleasing design. Its ability to maintain its transparency and optical properties in the long term also means that the aesthetically appealing nature of the design is visible for many years. SentryGlas® outperformed PVB in terms of cohesion with the fabric mesh ensuring greater moisture resistance and temperature stability for longer term durability."

Lighter façade panels enable more subtle supporting structures
For decades, interlayers made of polyvinyl butyral (PVB) have been the industry standard when producing laminated safety glass. Architects are well aware of the possibilities and limitations of such glass when used extensively in façade engineering, for roofing and window panels. In contrast, SentryGlas® enables an entirely new approach because the interlayer is over 100 times stiffer and five times stronger than PVB. As a consequence, there is an almost perfect transmission of load between two laminated sheets of glass, even at high temperatures, leading to the excellent flexural behaviour of the glass when under load – also under direct sunlight in high summer. Accordingly, laminates with SentryGlas® show less than half the rate of deflection when compared to laminates with PVB, when under the same load, and thus almost the same behaviour as monolithic glass of the same thickness

DuPont Glass Laminating Solutions provides materials, services and innovations to makers and specifiers of laminated glass. It helps create a better world by improving home protection and automotive safety, and enabling design of stronger, more energy-efficient buildings that let in more natural light.

DuPont is a science-based products and services company. Founded in 1802, DuPont puts science to work by creating sustainable solutions essential to a better, safer, healthier life for people everywhere. Operating in more than 70 countries, DuPont offers a wide range of innovative products and services for markets including agriculture and food; building and construction; communications; and transportation.

The DuPont Oval Logo, DuPont™, The miracles of science™ and all products denoted with ® or ™ are registered trademarks or trademarks of DuPont or its affiliates.

Note to the editor:

This press release is based upon information provided by:

SEFAR AG, Architecture
Hinterbissaustrasse 12
CH-9410 Heiden, Switzerland
Contact:
DuPont
Birgit Radlinger
Birgit.Radlinger@dupont.com

Birgit Radlinger | DuPont
Further information:
http://www.dupont.com

More articles from Architecture and Construction:

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>