Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DuPont™ SentryGlas® combines strength and aesthetics to light up the landscape

30.08.2013
Designed to symbolise a crystal of sylvinite – a crucial ore used for the production of Potash – the new HQ for the Belarusian Potash Company (BPC) is a staggering example of glazing being deployed to maximise light and colour.

A combination of coloured fabric from Sefar and DuPont™ SentryGlas® have created and aesthetically pleasing and structurally robust glazing design that really stands out.


Photo: Glassbel

The new HQ for the Belarusian Potash Company (BPC) is a staggering example of glazing being deployed to maximise light and colour. The laminated glass panels incorporates Sefar® Architecture VISION 260/55 with 55% open space for the colour and texture effects and a DuPont™ SentryGlas® interlayer for structural strength.


Photo: Glassbel

The laminated glass panels deploy a SentryGlas® interlayer, which adds to the structural strength of the design, without additional weight or design compromises. In total the glass façade covers 2,850m2 and is applied on a steel skeleton covered by a stick-frame construction structural system.

Designed by Varabyeu Partners architects, the building comprises offices, meeting rooms, a 180-seat conference hall, a reception area and guest apartments. Employee facilities also include a 56-seat café an underground car park and a gym.

The building is formed from two wings joined at the centre the stylised red crystal, the idea being that the building looks like a bird when viewed from above. The wings are connected by a full-height atrium that joins the crystal entrance hall with a system of staircases and panoramic elevators. Each wing represents a gallery to create an air of comfort and calm.

The red crystal structure at the centre deploys Sefar® Architecture VISION 260/55 with 55% open space, which gives glass a textile-like structural quality. It is decorated with a reflective red aluminium metal coating on its exterior-facing side, reflecting the constantly changing climatic conditions around the building. While from the inside, the black fabric permits an almost uninhibited view of the outside world. The laminated glass panels deploy a SentryGlas® interlayer, which adds to the structural strength of the design, without additional weight or design compromises. In total the glass façade covers 2,850m2 and is applied on a steel skeleton covered by a stick-frame construction structural system.

D.Sc. Dmitri Sobolevski from GLASSBEL explains: "SentryGlas® is the material of future construction with its unique structural performance. Through numerous tests and trials GLASSBEL has achieved optimum ways of working with SentryGlas® and as a result, unique projects such as Belarusian Potash Company's office have been achieved. However GLASSBEL is finding further ways of using SenryGlas® and maximizing its performance."

According to Jérôme Lugrin from Sefar: "SentryGlas® and Sefar Architecture Vision work very well together to produce a strong yet aesthetically pleasing design. Its ability to maintain its transparency and optical properties in the long term also means that the aesthetically appealing nature of the design is visible for many years. SentryGlas® outperformed PVB in terms of cohesion with the fabric mesh ensuring greater moisture resistance and temperature stability for longer term durability."

Lighter façade panels enable more subtle supporting structures
For decades, interlayers made of polyvinyl butyral (PVB) have been the industry standard when producing laminated safety glass. Architects are well aware of the possibilities and limitations of such glass when used extensively in façade engineering, for roofing and window panels. In contrast, SentryGlas® enables an entirely new approach because the interlayer is over 100 times stiffer and five times stronger than PVB. As a consequence, there is an almost perfect transmission of load between two laminated sheets of glass, even at high temperatures, leading to the excellent flexural behaviour of the glass when under load – also under direct sunlight in high summer. Accordingly, laminates with SentryGlas® show less than half the rate of deflection when compared to laminates with PVB, when under the same load, and thus almost the same behaviour as monolithic glass of the same thickness

DuPont Glass Laminating Solutions provides materials, services and innovations to makers and specifiers of laminated glass. It helps create a better world by improving home protection and automotive safety, and enabling design of stronger, more energy-efficient buildings that let in more natural light.

DuPont is a science-based products and services company. Founded in 1802, DuPont puts science to work by creating sustainable solutions essential to a better, safer, healthier life for people everywhere. Operating in more than 70 countries, DuPont offers a wide range of innovative products and services for markets including agriculture and food; building and construction; communications; and transportation.

The DuPont Oval Logo, DuPont™, The miracles of science™ and all products denoted with ® or ™ are registered trademarks or trademarks of DuPont or its affiliates.

Note to the editor:

This press release is based upon information provided by:

SEFAR AG, Architecture
Hinterbissaustrasse 12
CH-9410 Heiden, Switzerland
Contact:
DuPont
Birgit Radlinger
Birgit.Radlinger@dupont.com

Birgit Radlinger | DuPont
Further information:
http://www.dupont.com

More articles from Architecture and Construction:

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>