Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DuPont™ SentryGlas® combines strength and aesthetics to light up the landscape

30.08.2013
Designed to symbolise a crystal of sylvinite – a crucial ore used for the production of Potash – the new HQ for the Belarusian Potash Company (BPC) is a staggering example of glazing being deployed to maximise light and colour.

A combination of coloured fabric from Sefar and DuPont™ SentryGlas® have created and aesthetically pleasing and structurally robust glazing design that really stands out.


Photo: Glassbel

The new HQ for the Belarusian Potash Company (BPC) is a staggering example of glazing being deployed to maximise light and colour. The laminated glass panels incorporates Sefar® Architecture VISION 260/55 with 55% open space for the colour and texture effects and a DuPont™ SentryGlas® interlayer for structural strength.


Photo: Glassbel

The laminated glass panels deploy a SentryGlas® interlayer, which adds to the structural strength of the design, without additional weight or design compromises. In total the glass façade covers 2,850m2 and is applied on a steel skeleton covered by a stick-frame construction structural system.

Designed by Varabyeu Partners architects, the building comprises offices, meeting rooms, a 180-seat conference hall, a reception area and guest apartments. Employee facilities also include a 56-seat café an underground car park and a gym.

The building is formed from two wings joined at the centre the stylised red crystal, the idea being that the building looks like a bird when viewed from above. The wings are connected by a full-height atrium that joins the crystal entrance hall with a system of staircases and panoramic elevators. Each wing represents a gallery to create an air of comfort and calm.

The red crystal structure at the centre deploys Sefar® Architecture VISION 260/55 with 55% open space, which gives glass a textile-like structural quality. It is decorated with a reflective red aluminium metal coating on its exterior-facing side, reflecting the constantly changing climatic conditions around the building. While from the inside, the black fabric permits an almost uninhibited view of the outside world. The laminated glass panels deploy a SentryGlas® interlayer, which adds to the structural strength of the design, without additional weight or design compromises. In total the glass façade covers 2,850m2 and is applied on a steel skeleton covered by a stick-frame construction structural system.

D.Sc. Dmitri Sobolevski from GLASSBEL explains: "SentryGlas® is the material of future construction with its unique structural performance. Through numerous tests and trials GLASSBEL has achieved optimum ways of working with SentryGlas® and as a result, unique projects such as Belarusian Potash Company's office have been achieved. However GLASSBEL is finding further ways of using SenryGlas® and maximizing its performance."

According to Jérôme Lugrin from Sefar: "SentryGlas® and Sefar Architecture Vision work very well together to produce a strong yet aesthetically pleasing design. Its ability to maintain its transparency and optical properties in the long term also means that the aesthetically appealing nature of the design is visible for many years. SentryGlas® outperformed PVB in terms of cohesion with the fabric mesh ensuring greater moisture resistance and temperature stability for longer term durability."

Lighter façade panels enable more subtle supporting structures
For decades, interlayers made of polyvinyl butyral (PVB) have been the industry standard when producing laminated safety glass. Architects are well aware of the possibilities and limitations of such glass when used extensively in façade engineering, for roofing and window panels. In contrast, SentryGlas® enables an entirely new approach because the interlayer is over 100 times stiffer and five times stronger than PVB. As a consequence, there is an almost perfect transmission of load between two laminated sheets of glass, even at high temperatures, leading to the excellent flexural behaviour of the glass when under load – also under direct sunlight in high summer. Accordingly, laminates with SentryGlas® show less than half the rate of deflection when compared to laminates with PVB, when under the same load, and thus almost the same behaviour as monolithic glass of the same thickness

DuPont Glass Laminating Solutions provides materials, services and innovations to makers and specifiers of laminated glass. It helps create a better world by improving home protection and automotive safety, and enabling design of stronger, more energy-efficient buildings that let in more natural light.

DuPont is a science-based products and services company. Founded in 1802, DuPont puts science to work by creating sustainable solutions essential to a better, safer, healthier life for people everywhere. Operating in more than 70 countries, DuPont offers a wide range of innovative products and services for markets including agriculture and food; building and construction; communications; and transportation.

The DuPont Oval Logo, DuPont™, The miracles of science™ and all products denoted with ® or ™ are registered trademarks or trademarks of DuPont or its affiliates.

Note to the editor:

This press release is based upon information provided by:

SEFAR AG, Architecture
Hinterbissaustrasse 12
CH-9410 Heiden, Switzerland
Contact:
DuPont
Birgit Radlinger
Birgit.Radlinger@dupont.com

Birgit Radlinger | DuPont
Further information:
http://www.dupont.com

More articles from Architecture and Construction:

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

nachricht Designing Architecture with Solar Building Envelopes
16.01.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>