Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


DuPont Glass Laminating Solutions Announces Commercial Launch of New Safety Glass Interlayer for High UV Transmission

DuPont Glass Laminating Solutions announces the commercial launch of DuPont™ SentryGlas® N-UV ionoplast interlayer, a new interlayer technology for durable architectural safety glass with unsurpassed transmission of natural UV light into spaces containing special light-requiring flora and fauna.
"Bringing full-spectrum light through laminated glass is proving attractive to botanists and other life science professionals," said DuPont Advanced Interlayer Business Director Ron Hull. "Our decision to fully commercialize and promote SentryGlas® N-UV ionoplast interlayer for this market reflects growing demand from around the world for this unique product."

The latest project specified in high-UV-transmissive DuPont interlayer is South Korea's National Ecological Institute (NEI) "Ecorium" project, a 33,090-square-meter, multi-domed, multi-climate-zone nature reserve and sustainability-minded study center under construction in Seocheon-gun.

Past proof-of-concept projects include a popular and pioneering indoor Amazonian rainforest exhibit at the CosmoCaixa science museum in Barcelona; the world-famous "Tropenhaus" rare species botanical garden in Berlin, Germany; and a bottlenose dolphin rehabilitation center in Atlanta, Georgia.

For each project, DuPont specially manufactured its high-strength ionoplast interlayer without using UV blockers, allowing construction of laminated glass panels with improved transmission of shorter-wavelength UV-A and UV-B ultraviolet light. While invisible to humans, UV light is critically needed by many terrestrial and aquatic species for food identification, mating and display, proper growth and good health in environments as close as possible to their normal outdoor habitat.

Most architectural laminated glass includes UV blockers to protect interior fabrics and furnishings from discoloration and to avoid prolonged human skin exposure to the UV light rays. Compared with other interlayers available to the laminated glass industry, DuPont™ SentryGlas® N-UV is not cross-linked or cured, relying instead on intrinsic ionoplast stability to resist degradation or loss of clarity from extended exposure to sunlight.

Like normal ionoplast sheet, DuPont™ SentryGlas® N-UV offers up to 100 times the stiffness and 5 times the toughness of traditional safety glass interlayers, allowing for larger glass spans. This can further improve natural light transmission when used in combination with high-transmissivity glass. Structural engineering advantages of SentryGlas® interlayer often allow for thinner glass and minimally supported glazing. The interlayer's outstanding resistance to moisture ingress and chemical attack make it ideal for open-edged designs, even in warm, humid environments.

SentryGlas® N-UV interlayer is available in sheet form, in 1.52-mm (0.060-in.) thickness. To help life science professionals and others explore product application ideas, DuPont has sample interlayer sheets available immediately for lamination and testing with user-specified glass for envisioned projects.

For additional SentryGlas® N-UV product information, including ultraviolet light transmission curves, visit

DuPont (NYSE: DD) has been bringing world-class science and engineering to the global marketplace in the form of innovative products, materials, and services since 1802. The company believes that by collaborating with customers, governments, NGOs, and thought leaders we can help find solutions to such global challenges as providing enough healthy food for people everywhere, decreasing dependence on fossil fuels, and protecting life and the environment. For additional information about DuPont and its commitment to inclusive innovation, please visit

The DuPont Oval logo, DuPont™, The miracles of science™, and SentryGlas® are trademarks or registered trademarks of DuPont or its affiliates.

Samoo Architects & Engineers’ rendering of South Korea’s National Ecological Institute “Ecorium” project.


Birgit Radlinger

Birgit Radlinger | DuPont
Further information:

More articles from Architecture and Construction:

nachricht Rock solid: Carbon-reinforced concrete from Augsburg
11.10.2016 | Universität Augsburg

nachricht Heating and cooling with environmental energy
22.09.2016 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>