Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Designing buildings with a positive energy balance

18.03.2016

Until now most existing buildings have been pure energy consumers: the electricity comes from the power grid and the heat from a boiler, heat pump or heating network. However, buildings have a range of possibilities available to them to generate the energy they need by themselves.

The BINE Themen-info brochure “Net Zero Energy and Net Energy Plus Buildings” presents the various concepts. One focus is on how the energy balance for these pioneering buildings should be calculated. The spectrum of analysed examples from practice ranges from individual buildings to whole districts.


The BINE Themen-info brochure “Net Zero Energy and Net Energy Plus Buildings”

© BINE Informationsdienst

Uniformly balancing net zero-energy and net energy-plus buildings

In recent years, building concepts with balanced or positive energy and emissions balances have enjoyed increasing popularity among architects and builders. They have names like “energy-plus house”, “zero emissions house”, “efficiency house plus” or “activated-plus house”.

What all these buildings have in common is that, when calculated on average across the year, they do not draw more energy from the grid than they feed into the grid from their own production.

In Germany, however, there is still a lack of uniform standards and definitions for conversion factors, balance limits and for assessing the own requirement.

The embodied energy, i.e. the energy required to produce the building materials and construct the buildings, should also be incorporated in the balance with a view to the entire lifecycle.

Professor Karsten Voss and Eike Musall from the University of Wuppertal are the authors of the BINE-Themeninfo brochure. From 2008 to 2013 they participated in the IEA Working Group “Towards Zero Energy Solar Buildings”. In this Working Group, experts from 18 countries discussed their experiences with such building concepts. The German contribution was made as part of the “EnOB - Research for Energy-Optimised Construction” research initiative initiated by the German Federal Ministry for Economic Affairs and Energy.

You found all informations about the BINE info brochure “Net Zero Energy and Net Energy Plus Buildings” here:

http://www.bine.info/en/press/press-releases/archive-press-releases/pressemittei...

Uwe Milles/Birgit Schneider
presse(at)bine.info

About BINE Information Service

Energy research for practical applications

The BINE Information Service reports on energy research topics, such as new materials, systems and components, as well as innovative concepts and methods. The knowledge gained is incorporated into the implementation of new technologies in practice, because first-rate information provides a basis for pioneering decisions, whether in the planning of energy-optimised buildings, increasing the efficiency of industrial processes, or integrating renewable energy sources into existing systems.

About FIZ Karlsruhe

FIZ Karlsruhe – Leibniz Institute for Information Infrastructure is a not-for-profit organization with the public mission to make sci-tech information from all over the world publicly available and to provide related services in order to support the national and international transfer of knowledge and the promotion of innovation.
Our business areas:
• STN International – the world’s leading online service for research and patent information in science and technology
• KnowEsis – innovative eScience solutions to support the process of research in all its stages, and throughout all scientific disciplines
• Databases and Information Services – Databases and science portals in mathematics, computer science, crystallography, chemistry, and energy technology
FIZ Karlsruhe is a member of the Leibniz Association (WGL) which consists of 87 German research and infrastructure institutions.

Weitere Informationen:

http://www.bine.info/en - BINE Informationsdienst

Rüdiger Mack | idw - Informationsdienst Wissenschaft

More articles from Architecture and Construction:

nachricht Smart buildings through innovative membrane roofs and façades
31.08.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Concrete from wood
05.07.2017 | Schweizerischer Nationalfonds SNF

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>