Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CryoSol®Plus - Air conditioning of buildings with phase change slurries

03.12.2014

When it is very warm outside, the air conditioning system takes care of a consistently cool room climate inside the house. The water paraffin mixture CryoSol®Plus could make the purchasing of an air conditioning system for office buildings superfluous in the future and at the same time considerably unburden the power grids. Fraunhofer UMSICHT is researching areas of use for phase change slurries (PCS).

Cryosol®Plus looks like milk. But don't even think about drinking it. While the composition made of paraffins and water is non-poisonous, it still isn't all that tasty. Paraffin is known as wax or as maintenance oil in Vaseline. In CryoSol®Plus, the paraffins serve – finely dispersed – as phase change material (PCM) for heat and hold storage.


CryoSol®Plus – Dispersion made of water and paraffin.

© Fraunhofer UMSICHT


Capillary tube mats are similar to the principle of the human nervous system.

© Fraunhofer UMSICHT

The principle: When the dispersion absorbs heat, the solid tiny paraffin balls "melt" into paraffin droplets and store the heat. Once the solution cools down, the droplets become solid again. In CryoSol®Plus, the paraffin exists finely dispersed in water as a heterogeneous blend of substances.

CryoSol®Plus – two to three times the energy density of water

Jointly with the RWTH Aachen university, Fraunhofer UMSICHT has researched the utilization of CryoSol®Plus in supply systems. In principle, the blend can serve as heat transfer fluid, as storage medium for thermal systems, and for cooling. "In a temperature range from 5 to 20 degrees Celsius it is a good alternative to cold water, since it features a two to three times higher energy density", explains Dipl.-Ing. Tobias Kappels, researcher in the Thermal Energy Storage and Systems group.

In the project, the dispersion was utilized for the storage of nocturnal cold to then dissipate it during the day on a room-by-room basis via capillary tube mats in the ceiling. The idea for constructing the capillary tube mats originates from nature and corresponds to the network of fine nervous system under our skin which not only provides us with nutrition but also serves to regulate body heat. In buildings, the capillary tube mats in ceilings, walls, or floors are utilized for combined area heating or cooling.

Higher transport capacity, better storage

In the project, the dispersion was manufactured, characterized, and tested in a heating/cooling system, and the substance properties of the dispersions were modeled. The utilization of CryoSol®Plus could significantly increase the transport capacity and storage capability of a distribution network.

The utilization of the dispersion is of interest especially to the manufacturing industry, air conditioning, chemical and automotive industry as well as for cooling devices in the foodstuffs industry.

The project was funded for four years in the context of the framework program EnEff: Wärme (Energy Efficiency: Heat) by the German Federal Ministry of Economics and Technology (funding ID 0327471A).


Weitere Informationen:

http://www.umsicht.fraunhofer.de/en/press-media/2014/crysolplus-pcs-energy-storage.html

Iris Kumpmann | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

More articles from Architecture and Construction:

nachricht Concrete from wood
05.07.2017 | Schweizerischer Nationalfonds SNF

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>