Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CryoSol®Plus - Air conditioning of buildings with phase change slurries

03.12.2014

When it is very warm outside, the air conditioning system takes care of a consistently cool room climate inside the house. The water paraffin mixture CryoSol®Plus could make the purchasing of an air conditioning system for office buildings superfluous in the future and at the same time considerably unburden the power grids. Fraunhofer UMSICHT is researching areas of use for phase change slurries (PCS).

Cryosol®Plus looks like milk. But don't even think about drinking it. While the composition made of paraffins and water is non-poisonous, it still isn't all that tasty. Paraffin is known as wax or as maintenance oil in Vaseline. In CryoSol®Plus, the paraffins serve – finely dispersed – as phase change material (PCM) for heat and hold storage.


CryoSol®Plus – Dispersion made of water and paraffin.

© Fraunhofer UMSICHT


Capillary tube mats are similar to the principle of the human nervous system.

© Fraunhofer UMSICHT

The principle: When the dispersion absorbs heat, the solid tiny paraffin balls "melt" into paraffin droplets and store the heat. Once the solution cools down, the droplets become solid again. In CryoSol®Plus, the paraffin exists finely dispersed in water as a heterogeneous blend of substances.

CryoSol®Plus – two to three times the energy density of water

Jointly with the RWTH Aachen university, Fraunhofer UMSICHT has researched the utilization of CryoSol®Plus in supply systems. In principle, the blend can serve as heat transfer fluid, as storage medium for thermal systems, and for cooling. "In a temperature range from 5 to 20 degrees Celsius it is a good alternative to cold water, since it features a two to three times higher energy density", explains Dipl.-Ing. Tobias Kappels, researcher in the Thermal Energy Storage and Systems group.

In the project, the dispersion was utilized for the storage of nocturnal cold to then dissipate it during the day on a room-by-room basis via capillary tube mats in the ceiling. The idea for constructing the capillary tube mats originates from nature and corresponds to the network of fine nervous system under our skin which not only provides us with nutrition but also serves to regulate body heat. In buildings, the capillary tube mats in ceilings, walls, or floors are utilized for combined area heating or cooling.

Higher transport capacity, better storage

In the project, the dispersion was manufactured, characterized, and tested in a heating/cooling system, and the substance properties of the dispersions were modeled. The utilization of CryoSol®Plus could significantly increase the transport capacity and storage capability of a distribution network.

The utilization of the dispersion is of interest especially to the manufacturing industry, air conditioning, chemical and automotive industry as well as for cooling devices in the foodstuffs industry.

The project was funded for four years in the context of the framework program EnEff: Wärme (Energy Efficiency: Heat) by the German Federal Ministry of Economics and Technology (funding ID 0327471A).


Weitere Informationen:

http://www.umsicht.fraunhofer.de/en/press-media/2014/crysolplus-pcs-energy-storage.html

Iris Kumpmann | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

More articles from Architecture and Construction:

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

nachricht Designing Architecture with Solar Building Envelopes
16.01.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>