Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Comprehensive security of built structures

02.04.2012
How safe are buildings and tunnels in the event of fire, or if there’s an explosion or a plane crash? Are escape routes still accessible? Can people be rescued? Fraunhofer-Researchers and the Schüßler-Plan Group, an engineering consultancy, are together developing new concepts for the design and construction of bridges, tunnels and buildings.

On October 24, 2001 a devastating fire broke out in the St. Gotthard Road Tunnel in Switzerland, costing eleven people their lives. The main traffic route through the Swiss Alps remained closed for more than two months following the disaster whilst extensive renovation works were carried out.


How safe are high-rise buildings in the event of a plane crash? Special methods allow the calculation of exactly what the dynamic and structural loads are on buildings. © Fraunhofer EMI

Tunnels are not the only structures that can be destabilized by major incidents; buildings can be so damaged by explosives or fires that they collapse. How can multi-story buildings, bridges or nuclear power stations be made safe? Researchers at the Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institute, EMI are working alongside colleagues from the Schüßler-Plan Group, an engineering consultancy, to develop concepts for the comprehensive safety of buildings and structures. This means building contractors will in future be able to access the EMI researchers’ expert knowledge at an early stage in the planning process. The guidelines are being realized by engineers from Schüßler-Plan as part of an interactive collaboration.

Risk analysis for building contractors

“Our collaboration supports building contractors from the initial planning stages right through to completion,” says Dr. Alexander Stolz of the EMI in Freiburg. “We provide safety assurances during the planning phase by testing those loads that could potentially affect the structure, and we support contractors by furnishing them with a risk analysis report.” Scientists at the institute benefit from having on-site facilities to investigate the effects an explosion has on built structures, either through trials involving real explosives or using their large shock tube, powerful enough to test storey-high test specimen. „We use the finite element method, which is a numerical technique, to check the validity of the trial, and can predict any event scenario we want.

Schüßler-Plan then converts the results into engineering models. Building contractors can be certain that the dynamic and structural loads on buildings were calculated exactly. On top of this, we use the newest and most innovative protective and high-performance materials – materials that are both developed and qualified by us,“ he explains. The team also deals with retrofitting existing constructions such as airports, subway stations or underground parking lots. The experts do more than just help to make individual buildings safer, they also introduce safety-relevant aspects into urban planning. Simulation tools are used to calculate the incredibly complex way a pressure wave spreads through a built-up area. This enables different designs for urban structures to be judged on aspects concerning their relative safety – and improvements to be made accordingly – all whilst still in the planning stages.

Clear escape routes in the event of a plane crash

The collaboration between Schüßler-Plan und the EMI came about as part of the “Secure high-rise buildings” project. Markus Nöldgen, a former Schüßler-Plan employee and currently a professor at Cologne University of Applied Sciences, was prompted by the airplane attack on the World Trade Center in New York to consider the statics of high-rise buildings. The result was an ingenious framework construction built around an inner core of Ultra High Performance Concrete (UHPC), which ensures escape routes are kept clear and accessible in the event of an aircraft impact.

Dr. Ingo Müllers, head of department at Schüßler-Plan, welcomes the collaboration with colleagues from Fraunhofer. The engineering consultancy has more than 50 years of market experience. “We’re delighted to now be able to offer our clients an additional service,” he says. The purchase of a single contract buys the client the expertise of both scientists and engineers. In fact the cooperation extends so far that even the construction work itself is overseen by both partners. “We are a one-stop shop for customers, who only have to deal with a single contact – which is what the market demands – leaving all the necessary interactions to take place between experienced planners.”

| Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/april/comprehensive-security-of-built-structures.html

More articles from Architecture and Construction:

nachricht Flexible protection for "smart" building and façade components
30.11.2016 | Fraunhofer-Institut für Silicatforschung ISC

nachricht Healthy living without damp and mold
16.11.2016 | Fraunhofer-Gesellschaft

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>