Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Comprehensive security of built structures

02.04.2012
How safe are buildings and tunnels in the event of fire, or if there’s an explosion or a plane crash? Are escape routes still accessible? Can people be rescued? Fraunhofer-Researchers and the Schüßler-Plan Group, an engineering consultancy, are together developing new concepts for the design and construction of bridges, tunnels and buildings.

On October 24, 2001 a devastating fire broke out in the St. Gotthard Road Tunnel in Switzerland, costing eleven people their lives. The main traffic route through the Swiss Alps remained closed for more than two months following the disaster whilst extensive renovation works were carried out.


How safe are high-rise buildings in the event of a plane crash? Special methods allow the calculation of exactly what the dynamic and structural loads are on buildings. © Fraunhofer EMI

Tunnels are not the only structures that can be destabilized by major incidents; buildings can be so damaged by explosives or fires that they collapse. How can multi-story buildings, bridges or nuclear power stations be made safe? Researchers at the Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institute, EMI are working alongside colleagues from the Schüßler-Plan Group, an engineering consultancy, to develop concepts for the comprehensive safety of buildings and structures. This means building contractors will in future be able to access the EMI researchers’ expert knowledge at an early stage in the planning process. The guidelines are being realized by engineers from Schüßler-Plan as part of an interactive collaboration.

Risk analysis for building contractors

“Our collaboration supports building contractors from the initial planning stages right through to completion,” says Dr. Alexander Stolz of the EMI in Freiburg. “We provide safety assurances during the planning phase by testing those loads that could potentially affect the structure, and we support contractors by furnishing them with a risk analysis report.” Scientists at the institute benefit from having on-site facilities to investigate the effects an explosion has on built structures, either through trials involving real explosives or using their large shock tube, powerful enough to test storey-high test specimen. „We use the finite element method, which is a numerical technique, to check the validity of the trial, and can predict any event scenario we want.

Schüßler-Plan then converts the results into engineering models. Building contractors can be certain that the dynamic and structural loads on buildings were calculated exactly. On top of this, we use the newest and most innovative protective and high-performance materials – materials that are both developed and qualified by us,“ he explains. The team also deals with retrofitting existing constructions such as airports, subway stations or underground parking lots. The experts do more than just help to make individual buildings safer, they also introduce safety-relevant aspects into urban planning. Simulation tools are used to calculate the incredibly complex way a pressure wave spreads through a built-up area. This enables different designs for urban structures to be judged on aspects concerning their relative safety – and improvements to be made accordingly – all whilst still in the planning stages.

Clear escape routes in the event of a plane crash

The collaboration between Schüßler-Plan und the EMI came about as part of the “Secure high-rise buildings” project. Markus Nöldgen, a former Schüßler-Plan employee and currently a professor at Cologne University of Applied Sciences, was prompted by the airplane attack on the World Trade Center in New York to consider the statics of high-rise buildings. The result was an ingenious framework construction built around an inner core of Ultra High Performance Concrete (UHPC), which ensures escape routes are kept clear and accessible in the event of an aircraft impact.

Dr. Ingo Müllers, head of department at Schüßler-Plan, welcomes the collaboration with colleagues from Fraunhofer. The engineering consultancy has more than 50 years of market experience. “We’re delighted to now be able to offer our clients an additional service,” he says. The purchase of a single contract buys the client the expertise of both scientists and engineers. In fact the cooperation extends so far that even the construction work itself is overseen by both partners. “We are a one-stop shop for customers, who only have to deal with a single contact – which is what the market demands – leaving all the necessary interactions to take place between experienced planners.”

| Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/april/comprehensive-security-of-built-structures.html

More articles from Architecture and Construction:

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

New photoacoustic technique detects gases at parts-per-quadrillion level

28.06.2017 | Physics and Astronomy

Funding of Collaborative Research Center developing nanomaterials for cancer immunotherapy extended

28.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>