Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cleaning the Air with Roof Tiles

05.06.2014

Students develop titanium dioxide roof tile coating that removes up to 97 percent of smog-causing nitrogen oxides

A team of University of California, Riverside’s Bourns College of Engineering students created a roof tile coating that when applied to an average-sized residential roof breaks down the same amount of smog-causing nitrogen oxides per yearas a car driven 11,000 miles.


At left, two tiles coated with the titanium dioxide mixture. At right, uncoated tiles. At top, a commercially available tile with titanium dioxide.


Mini atmosphere chamber built by the students for the experiments.

They calculated 21 tons of nitrogen oxides would be eliminated daily if tiles on one million roofs were coated with their titanium dioxide mixture. They also calculated it would cost only about $5 for enough titanium dioxide to coat an average-sized residential roof.

That would have a significant impact in Southern California, where 500 tons of nitrogen oxides are emitted daily in the South Coast Air Quality Management District coverage area, which includes all of Orange County and the urban portions of Los Angeles, Riverside and San Bernardino counties.

... more about:
»Cleaning »Coast »Planet »Roof »Tiles »coating »dioxide »nitrogen »sunlight »titanium

Last month, the research by the UC Riverside team – Carlos Espinoza, Louis Lancaster, Chun-Yu “Jimmy” Liang, Kelly McCoy, Jessica Moncayo and Edwin Rodriguez – received an honorable mention award for phase two of an Environmental Protection Agency student design competition.

A UC Riverside student team who worked on the project last year received $15,000 as a phase one winner of EPA’s P3 (People, Prosperity and the Planet) competition. That team consisted of William Lichtenberg, Duc Nguyen, Calvin Cao, Vincent Chen and Espinoza (an undergraduate then who is now a graduate student at UC Riverside).

Both teams were advised by David Cocker, a professor of chemical and environmental engineering, and Kawai Tam, a lecturer at the Bourns College of Engineering.

Nitrogen oxides are formed when certain fuels are burned at high temperatures. Nitrogen oxides then react with volatile organic compounds in the presence of sunlight to create smog.

Currently, there are other roofing tiles on the market that help reduce pollution from nitrogen oxides. However, there is little data about claims that they reduce smog.

The students set out to change that. They coated two identical off-the-shelf clay tiles with different amounts of titanium dioxide, a common compound found in everything from paint to food to cosmetics. The tiles were then placed inside a miniature atmospheric chamber that the students built out of wood, Teflon and PVC piping.

The chamber was connected to a source of nitrogen oxides and a device that reads concentrations of nitrogen oxides. They used ultraviolet light to simulate sunlight, which activates the titanium dioxide and allows it to break down the nitrogen oxides.

They found the titanium dioxide coated tiles removed between 88 percent and 97 percent of the nitrogen oxides. They also found there wasn’t much of a difference in nitrogen oxide removal when different amounts of the coating were applied, despite one having about 12 times as much titanium dioxide coating. There wasn’t much of a difference because surface area, not the amount of coating, is the important factor.

The current team of students, all of whom are set to graduate in June, are hopeful a new team of students will continue with this project and test other variables.

For example, they want to see what happens when they add their titanium dioxide to exterior paint. They are also considering looking at applying the coating to concrete, walls or dividers along freeways. Other questions include how long the coating will last when applied and what impact changing the color of coating, which is currently white, would have.

Media Contact


Tel: (951) 827-1287
E-mail: sean.nealon@ucr.edu
Twitter: seannealon

Additional Contacts

Kawai Tam
Tel: 951-827-2498
E-mail: ktam@engr.ucr.edu

Sean Nealon | Eurek Alert!
Further information:
http://www.ucr.edu

Further reports about: Cleaning Coast Planet Roof Tiles coating dioxide nitrogen sunlight titanium

More articles from Architecture and Construction:

nachricht NEST: building of the future is up and running
23.05.2016 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Designing buildings with a positive energy balance
18.03.2016 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>