Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cleaning the Air with Roof Tiles

05.06.2014

Students develop titanium dioxide roof tile coating that removes up to 97 percent of smog-causing nitrogen oxides

A team of University of California, Riverside’s Bourns College of Engineering students created a roof tile coating that when applied to an average-sized residential roof breaks down the same amount of smog-causing nitrogen oxides per yearas a car driven 11,000 miles.


At left, two tiles coated with the titanium dioxide mixture. At right, uncoated tiles. At top, a commercially available tile with titanium dioxide.


Mini atmosphere chamber built by the students for the experiments.

They calculated 21 tons of nitrogen oxides would be eliminated daily if tiles on one million roofs were coated with their titanium dioxide mixture. They also calculated it would cost only about $5 for enough titanium dioxide to coat an average-sized residential roof.

That would have a significant impact in Southern California, where 500 tons of nitrogen oxides are emitted daily in the South Coast Air Quality Management District coverage area, which includes all of Orange County and the urban portions of Los Angeles, Riverside and San Bernardino counties.

... more about:
»Cleaning »Coast »Planet »Roof »Tiles »coating »dioxide »nitrogen »sunlight »titanium

Last month, the research by the UC Riverside team – Carlos Espinoza, Louis Lancaster, Chun-Yu “Jimmy” Liang, Kelly McCoy, Jessica Moncayo and Edwin Rodriguez – received an honorable mention award for phase two of an Environmental Protection Agency student design competition.

A UC Riverside student team who worked on the project last year received $15,000 as a phase one winner of EPA’s P3 (People, Prosperity and the Planet) competition. That team consisted of William Lichtenberg, Duc Nguyen, Calvin Cao, Vincent Chen and Espinoza (an undergraduate then who is now a graduate student at UC Riverside).

Both teams were advised by David Cocker, a professor of chemical and environmental engineering, and Kawai Tam, a lecturer at the Bourns College of Engineering.

Nitrogen oxides are formed when certain fuels are burned at high temperatures. Nitrogen oxides then react with volatile organic compounds in the presence of sunlight to create smog.

Currently, there are other roofing tiles on the market that help reduce pollution from nitrogen oxides. However, there is little data about claims that they reduce smog.

The students set out to change that. They coated two identical off-the-shelf clay tiles with different amounts of titanium dioxide, a common compound found in everything from paint to food to cosmetics. The tiles were then placed inside a miniature atmospheric chamber that the students built out of wood, Teflon and PVC piping.

The chamber was connected to a source of nitrogen oxides and a device that reads concentrations of nitrogen oxides. They used ultraviolet light to simulate sunlight, which activates the titanium dioxide and allows it to break down the nitrogen oxides.

They found the titanium dioxide coated tiles removed between 88 percent and 97 percent of the nitrogen oxides. They also found there wasn’t much of a difference in nitrogen oxide removal when different amounts of the coating were applied, despite one having about 12 times as much titanium dioxide coating. There wasn’t much of a difference because surface area, not the amount of coating, is the important factor.

The current team of students, all of whom are set to graduate in June, are hopeful a new team of students will continue with this project and test other variables.

For example, they want to see what happens when they add their titanium dioxide to exterior paint. They are also considering looking at applying the coating to concrete, walls or dividers along freeways. Other questions include how long the coating will last when applied and what impact changing the color of coating, which is currently white, would have.

Media Contact


Tel: (951) 827-1287
E-mail: sean.nealon@ucr.edu
Twitter: seannealon

Additional Contacts

Kawai Tam
Tel: 951-827-2498
E-mail: ktam@engr.ucr.edu

Sean Nealon | Eurek Alert!
Further information:
http://www.ucr.edu

Further reports about: Cleaning Coast Planet Roof Tiles coating dioxide nitrogen sunlight titanium

More articles from Architecture and Construction:

nachricht University of Cincinnati, industry partners develop low-cost, 'tunable' window tintings
11.06.2015 | University of Cincinnati

nachricht More densely populated urban areas call for more urban quality
28.05.2015 | Schweizerischer Nationalfonds SNF

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

Im Focus: Lasers for Fast Internet in Space – Space Technology from Aachen

On June 23, the second Sentinel mission was launched from the space mission launch center in Kourou. A critical component of Aachen is on board. Researchers at the Fraunhofer Institute for Laser Technology ILT and Tesat-Spacecom have jointly developed the know-how for space-qualified laser components. For the Sentinel mission the diode laser pump module of the Laser Communication Terminal LCT was planned and constructed in Aachen in cooperation with the manufacturer of the LCT, Tesat-Spacecom, and the Ferdinand Braun Institute.

After eight years of preparation, in the early morning of June 23 the time had come: in Kourou in French Guiana, the European Space Agency launched the...

Im Focus: Superslippery islands (but then they get stuck)

A simple reversible process that changes friction in the nanoworld

(Nano)islands that slide freely on a sea of copper, but when they become too large (and too dense) they end up getting stuck: that nicely sums up the system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Aromatic couple makes new chemical bonds

30.06.2015 | Life Sciences

Extreme makeover: Mankind's unprecedented transformation of Earth

30.06.2015 | Earth Sciences

Large-scale field-effect transistors based on solution-grown organic single crystals are fabricated

30.06.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>