Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The city beneath the city

17.11.2008
The diamond-shape island state of Singapore is more or less the same size as the Danish island of Bornholm. It takes about an hour to drive from the east to the west of the little island on which the city lies.

In spite of its small size, the city has a population of five million, and it is an important communications node by both sea and air. Given that 693 square kilometres has to find room for as many people as the whole of the population of Norway, we can understand that the city must be crowded and that it has reached the limits of expansion.

This is why the authorities are now considering moving some of Singapore’s infrastructure underground. Several ministries have drawn up a list of proposals for how underground caverns could be used for this purpose.

The possibilities include moving underground everything from water treatment plants and reservoirs to airport logistics and PC component microchip manufacture. Every area must be carefully evaluated before any decision is taken, and this is what the Singaporean authorities want Norwegian tunnel experts to do.

High reputation abroad

The fact is that Norwegian expertise in building and using underground facilities is in high repute in other countries – not least where exploiting the construction characteristics of the rock mass is concerned. Since the Second World War, Norwegian tunnel engineers have gained solid experience in building tunnels and caverns for many different purposes, including storage halls for oil and gas, hydropower projects and swimming pools and sports areas.

Today, SINTEF Building Research is in the process of developing subsea tunnel projects in Iceland, the Åland Islands and the Faeroes. Our scientists are acting as consultants in the construction of a 25 km-long sewage tunnel under Hong Kong, and are also involved in other projects in China and India. Almost four years ago, SINTEF won its first contract for preliminary rock mechanics studies in Singapore, for a gigantic underground oil storage facility.

Now we have received a request to support the development of a master plan for Singapore, and to help to evaluate and assess a range of solutions for each of its ten areas.

Basis for decision-making

“We put a lot of work into winning projects in other countries”, says SINTEF research manager Eivind Grøv. “Besides being intellectually rewarding and exciting, they are a useful complement to our Norwegian projects”.

SINTEF is operating in a consortium together with Multiconsult and a local company, TriTech. “We set up this joint effort some years ago, and it has turned out to be a useful bridgehead into Singapore”, says Grøv.

The Trondheim scientists, who were awarded the contract a couple of months ago, have been using the time since then to collect examples of similar projects that have already been performed such fields. In the course of the next nine months, and on the basis of three examples from each field, they are to develop appropriate solutions for Singapore. The ministries involved will use these as a basis for decision-making.

Large dimensions

“We are talking about large areas all over the island,” says chief scientist Ming Lu of SINTEF Building Research, who has led the earlier Norwegian efforts in SIngapore. “If these facilities are built, the process will involve digging shafts, boring access tunnels and building huge caverns. It is extremely interesting for us to contribute to a job like this, since we are talking here about the first project of such dimensions anywhere in the world”.

As far as we know, only in Helsinki is there already such planned use of underground area. There, it is not simply a matter of solving the problem of lack of space, but also of moving unaesthetic or noisy elements of the infrastructure away from the surface, thus making valuable areas of land available to the city’s residents.

“Today, we don’t know what they will decide to build in the future, but no matter what they turn out to be, it is easy to imagine that these could involve enormous storage rooms. Singapore and Hong Kong have the two largest harbours in the world, where huge numbers of containers are loaded and discharged at an incredible speed. Even if the authorities decide to relocate only the port warehouses underground, that alone would mean clearing quite a few cubic kilometres of rock,” says Eivind Grøv.

Aase Dragland | alfa
Further information:
http://www.sintef.com

More articles from Architecture and Construction:

nachricht Smart buildings through innovative membrane roofs and façades
31.08.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Concrete from wood
05.07.2017 | Schweizerischer Nationalfonds SNF

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>