Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cargo container research to improve buildings' ability to withstand tsunamis

06.02.2013
Anyone who has seen the movie "Impossible" or watched footage from the Japanese tsunami has learned the terror that can strike with little warning. In those cases, when there is no time to flee, there may still be time to reach higher ground, called vertical evacuation.

But as you race to the third floor, how do you know if the building will hold up? Walls of water are not the only danger. Another potentially lethal challenge is water-driven debris - such as 60,000-pound fully loaded cargo containers - transformed into projectiles. Often pulled behind semi-trucks on highways, these containers that line port areas well exceed the telephone-pole-size 1,000-pound default log assumed by most U.S. building-design guidelines.



A multi-university team lead by Ronald Riggs, a structural engineer at the University of Hawaii, has determined just what the impact could be and will present findings at an international conference in June. The goal is to supply structural engineers with information to design buildings in areas vulnerable to tsunamis.

Currently there are no scientifically tested guidelines. And, as those who survived the Japanese tsunami that swept thousands to their deaths can attest, no one had planned for such force.

"Most structural systems are designed to defy gravity, not a side kick from a shipping container," Riggs says. "An engineer can build what it takes to withstand the karate chop, but first the engineer has to know what forces to expect."

This knowledge is vital not only for the buildings into which people might flee, but also for coastline storage tanks that could spew chemicals or other pollutants if damaged.

Riggs first began thinking about the problem as he examined damage to bridges and buildings following Hurricane Katrina. He noticed the cargo containers and barges that had been flung onto land in areas such as Biloxi, Miss. On another scientific excursion to Samoa, he says he saw a shipping container "whacked against a meeting hall - and there was no port anywhere nearby."

"These shipping containers are surprisingly ubiquitous," Riggs says. The point was further brought home on TVs across the world that played and replayed footage from Tohoku, Japan, as tsunami-fed waters dragged cars, trucks and shipping containers as much as six miles inland and then back out to sea in the drawdown.

"They may have been moving only about 10 miles an hour, but given their weight, this is a significant load for a structure not made for it."

His colleagues and he proposed research to analyze several pieces of the puzzle with the help of the George E. Brown Jr. Network for Earthquake Engineering Simulation (NEES), a distributed laboratory with 14 sites across the country funded by the National Science Foundation. The network, which also funded Riggs' research, provides access to highly specialize, sophisticated and expensive equipment.

For Riggs, two NEES sites were needed. One is at Lehigh University in Bethlehem, Pa., which specializes in real-time multi-directional testing for earthquake simulation of large-scale structural systems. The other is a wave flume longer than a football field at the Tsunami Research Facility at Oregon State University. At the Lehigh site, they swung full-scale wooden poles and shipping containers through the air on a pendulum to determine the force of impact at various velocities. At Oregon State, they ran similar tests at a 1:5 scale, but this time in its large flume wave to see if that made a difference.

His basic assumptions held true, but there were two surprises. First, when the speed of the projectile was the same, the water did not have a significant impact.

"We thought the fact that it was in water would increase the load, but it did not, at least not substantially," Riggs says. "The impact is so short, on the order of a few milliseconds, that in some ways the water doesn't have time to increase the force."

The second surprise was that the weight of the shipping container's contents also did not matter as much as he would have expected. The container itself, which is roughly 20 feet long and weighs about 5,000 pounds empty, could weigh as much as 60,000 pounds when fully loaded. Yet, its load when striking a building was not significantly greater than that of the empty container.

The reason is the same as for the water, Riggs says.

"Unless the contents are rigidly attached to the frame of the container, which they usually are not, the contents also don't have time to increase the force during the very short duration of impact."

The next step for Riggs and his team is to use the preliminary findings to better define building guidelines and policy.

"It's especially important for areas like Japan and the Cascadia area on the West Coast of the United States where tsunamis are most likely to strike with little warning, making vertical evacuation essential," Riggs says. "Or in Waikiki where the population density would make horizontal evacuation (trying to outrun the tsunami) problematic."

Riggs will present the team's findings at the 32nd International Conference on Ocean, Offshore and Arctic Engineering, sponsored by the Society of Mechanical Engineers ASME to be held June 9-14 in Nantes, France. His colleagues are Clay Naito, associate professor at Lehigh University; Dan Cox, professor at Oregon State University; and Marcelo Kobayashi, associate professor at the University of Hawaii.

Contact:
Ronald Riggs, 808-956-6566, riggs@hawaii.edu

Writer:
Jeanne Norberg, 765-491-1460, jnorberg@purdue.edu

Jeanne Norberg | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Architecture and Construction:

nachricht Smart buildings through innovative membrane roofs and façades
31.08.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Concrete from wood
05.07.2017 | Schweizerischer Nationalfonds SNF

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>