Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building a Stronger Roof Over Your Head: 'Three Little Pigs' Project Begins First Tests

27.08.2008
With hurricane season upon us, many wonder if the roof over their heads will hold firm in the face of high winds.

This week, inaugural tests at The University of Western Ontario’s ‘Three Little Pigs’ project at The Insurance Research Lab for Better Homes will begin to provide answers as researchers ‘raze the roof’.

The Insurance Research Lab for Better Homes is the first of its kind in the world to subject full-scale houses to pressures that simulate the effects of winds as strong as a Category 5 hurricane – or 200 mph – all within a controlled environment. Researchers at the $7-million facility will also be studying the destructive pathways of mould and water.

As it is too expensive to engineer an entire house, researchers hope to make them safer through basic additions and amendments, with minimal cost to homeowners. Specifically, researchers will be watching the roof fail to see how load on the house redistributes. This will tell them how failure of the structure occurs and will help answer questions about the adequacy of building codes. Ultimately, different wind damage mitigation strategies and building products will be tested in the facility.

Enclosed in a large, blue steel hanger that can be moved on tracks, the test model is a 1,900 square foot, two-storey, four-bedroom house typical of homes found in southwestern Ontario. 60 pressure boxes used to simulate hurricane-force loads are rigged to a framework that surrounds the house.

These studies build on expertise developed through 40 years of wind tests at the Boundary Layer Wind Tunnel Laboratory at Western, widely regarded as one of the best wind tunnels in the world. The project is also affiliated with Fanshawe College, the Institute for Catastrophic Loss Reduction, Cambridge Consultants, Ltd. and Insurance Bureau of Canada.

Notes to Editors:
Media is invited to watch and film the inaugural tests, which will be performed on a section of the model house’s roof. Note that there will not actually be blowing winds in the building, but rather pressure hoses that will simulate the sucking and blowing pressure created by winds.
Cameras throughout the facility will also record this test. Footage from this and previous tests will be made available to media.

Researcher Greg Kopp will provide a tour of the facility – including up to the roof of the house – prior to the test to explain the study. He will also be available to provide explanations of the damage following the test.

WHEN/WHERE: August 28, 2008, 10:30 a.m. The Insurance Research Lab for Better Homes at the London International Airport

Directions: Take Highway 401 to London and exit at Veteran’s Memorial Parkway (formerly Airport Road). Go north approximately 11 kms, until the Parkways ends at Huron Street. Go east on Huron Street (0.7 km) to the railway crossing – at this point the main road swings north around London International Airport, but keep straight on the smaller paved road, which will come to a dead end after 0.6 km from the railway track.

The Insurance Research Lab for Better Homes is the large blue building on the right. Enter through the gate at the east side of the facility.

FACTS:

The Insurance Research Lab for Better Homes is home to The University of Western Ontario’s ‘Three Little Pigs’ project.
The lab is not a wind tunnel. There is no wind actually blowing through the lab, or at the house built inside the facility.
60 ‘pressure load activators’ create hurricane-force pressure against the house. These pressure boxes include large hoses that are able to suck and blow to simulate the fluctuating force of wind. The pressure is regulated so that each box applies different pressure to simulate turbulent wind coming from different directions and moving across the house. The pressure load actuators were developed specifically for this project and the technology has been patented.
Apart from actually testing a house in a hurricane, these pressure boxes create the most realistic test of how a home would react to such conditions. This kind of testing has never been done before in such a realistic way on a complete house.
The roof of the house will not be completely destroyed; rather, during testing, the roof will move approximately four inches away from the wall. This is a dramatic shift that would essentially be a catastrophic failure and you would, according to researchers be “likely to find your roof on a neighbour’s lawn.” The force of the wind, according to researcher Kopp, is like “turning the house upside down, adding weight to it and shaking it!”
These tests coincide with the third anniversary of Hurricane Katrina.
History: Funded primarily by the Canada Foundation for Innovation and the Ontario Innovation Trust, construction of The Insurance Research Lab for Better Homes began in 2005.

Media contact: Douglas Keddy, Research Communications Coordinator, The University of Western Ontario, 519-661-2111 ext. 87485

Douglas Keddy | EurekAlert!
Further information:
http://www.uwo.ca

Further reports about: Airport Building Insurance Parkway Roof Three Little Pigs hurricane season wind tunnel

More articles from Architecture and Construction:

nachricht Smart buildings through innovative membrane roofs and façades
31.08.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Concrete from wood
05.07.2017 | Schweizerischer Nationalfonds SNF

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>