Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building a Stronger Roof Over Your Head: 'Three Little Pigs' Project Begins First Tests

27.08.2008
With hurricane season upon us, many wonder if the roof over their heads will hold firm in the face of high winds.

This week, inaugural tests at The University of Western Ontario’s ‘Three Little Pigs’ project at The Insurance Research Lab for Better Homes will begin to provide answers as researchers ‘raze the roof’.

The Insurance Research Lab for Better Homes is the first of its kind in the world to subject full-scale houses to pressures that simulate the effects of winds as strong as a Category 5 hurricane – or 200 mph – all within a controlled environment. Researchers at the $7-million facility will also be studying the destructive pathways of mould and water.

As it is too expensive to engineer an entire house, researchers hope to make them safer through basic additions and amendments, with minimal cost to homeowners. Specifically, researchers will be watching the roof fail to see how load on the house redistributes. This will tell them how failure of the structure occurs and will help answer questions about the adequacy of building codes. Ultimately, different wind damage mitigation strategies and building products will be tested in the facility.

Enclosed in a large, blue steel hanger that can be moved on tracks, the test model is a 1,900 square foot, two-storey, four-bedroom house typical of homes found in southwestern Ontario. 60 pressure boxes used to simulate hurricane-force loads are rigged to a framework that surrounds the house.

These studies build on expertise developed through 40 years of wind tests at the Boundary Layer Wind Tunnel Laboratory at Western, widely regarded as one of the best wind tunnels in the world. The project is also affiliated with Fanshawe College, the Institute for Catastrophic Loss Reduction, Cambridge Consultants, Ltd. and Insurance Bureau of Canada.

Notes to Editors:
Media is invited to watch and film the inaugural tests, which will be performed on a section of the model house’s roof. Note that there will not actually be blowing winds in the building, but rather pressure hoses that will simulate the sucking and blowing pressure created by winds.
Cameras throughout the facility will also record this test. Footage from this and previous tests will be made available to media.

Researcher Greg Kopp will provide a tour of the facility – including up to the roof of the house – prior to the test to explain the study. He will also be available to provide explanations of the damage following the test.

WHEN/WHERE: August 28, 2008, 10:30 a.m. The Insurance Research Lab for Better Homes at the London International Airport

Directions: Take Highway 401 to London and exit at Veteran’s Memorial Parkway (formerly Airport Road). Go north approximately 11 kms, until the Parkways ends at Huron Street. Go east on Huron Street (0.7 km) to the railway crossing – at this point the main road swings north around London International Airport, but keep straight on the smaller paved road, which will come to a dead end after 0.6 km from the railway track.

The Insurance Research Lab for Better Homes is the large blue building on the right. Enter through the gate at the east side of the facility.

FACTS:

The Insurance Research Lab for Better Homes is home to The University of Western Ontario’s ‘Three Little Pigs’ project.
The lab is not a wind tunnel. There is no wind actually blowing through the lab, or at the house built inside the facility.
60 ‘pressure load activators’ create hurricane-force pressure against the house. These pressure boxes include large hoses that are able to suck and blow to simulate the fluctuating force of wind. The pressure is regulated so that each box applies different pressure to simulate turbulent wind coming from different directions and moving across the house. The pressure load actuators were developed specifically for this project and the technology has been patented.
Apart from actually testing a house in a hurricane, these pressure boxes create the most realistic test of how a home would react to such conditions. This kind of testing has never been done before in such a realistic way on a complete house.
The roof of the house will not be completely destroyed; rather, during testing, the roof will move approximately four inches away from the wall. This is a dramatic shift that would essentially be a catastrophic failure and you would, according to researchers be “likely to find your roof on a neighbour’s lawn.” The force of the wind, according to researcher Kopp, is like “turning the house upside down, adding weight to it and shaking it!”
These tests coincide with the third anniversary of Hurricane Katrina.
History: Funded primarily by the Canada Foundation for Innovation and the Ontario Innovation Trust, construction of The Insurance Research Lab for Better Homes began in 2005.

Media contact: Douglas Keddy, Research Communications Coordinator, The University of Western Ontario, 519-661-2111 ext. 87485

Douglas Keddy | EurekAlert!
Further information:
http://www.uwo.ca

Further reports about: Airport Building Insurance Parkway Roof Three Little Pigs hurricane season wind tunnel

More articles from Architecture and Construction:

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>