Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Building a Stronger Roof Over Your Head: 'Three Little Pigs' Project Begins First Tests

27.08.2008
With hurricane season upon us, many wonder if the roof over their heads will hold firm in the face of high winds.

This week, inaugural tests at The University of Western Ontario’s ‘Three Little Pigs’ project at The Insurance Research Lab for Better Homes will begin to provide answers as researchers ‘raze the roof’.

The Insurance Research Lab for Better Homes is the first of its kind in the world to subject full-scale houses to pressures that simulate the effects of winds as strong as a Category 5 hurricane – or 200 mph – all within a controlled environment. Researchers at the $7-million facility will also be studying the destructive pathways of mould and water.

As it is too expensive to engineer an entire house, researchers hope to make them safer through basic additions and amendments, with minimal cost to homeowners. Specifically, researchers will be watching the roof fail to see how load on the house redistributes. This will tell them how failure of the structure occurs and will help answer questions about the adequacy of building codes. Ultimately, different wind damage mitigation strategies and building products will be tested in the facility.

Enclosed in a large, blue steel hanger that can be moved on tracks, the test model is a 1,900 square foot, two-storey, four-bedroom house typical of homes found in southwestern Ontario. 60 pressure boxes used to simulate hurricane-force loads are rigged to a framework that surrounds the house.

These studies build on expertise developed through 40 years of wind tests at the Boundary Layer Wind Tunnel Laboratory at Western, widely regarded as one of the best wind tunnels in the world. The project is also affiliated with Fanshawe College, the Institute for Catastrophic Loss Reduction, Cambridge Consultants, Ltd. and Insurance Bureau of Canada.

Notes to Editors:
Media is invited to watch and film the inaugural tests, which will be performed on a section of the model house’s roof. Note that there will not actually be blowing winds in the building, but rather pressure hoses that will simulate the sucking and blowing pressure created by winds.
Cameras throughout the facility will also record this test. Footage from this and previous tests will be made available to media.

Researcher Greg Kopp will provide a tour of the facility – including up to the roof of the house – prior to the test to explain the study. He will also be available to provide explanations of the damage following the test.

WHEN/WHERE: August 28, 2008, 10:30 a.m. The Insurance Research Lab for Better Homes at the London International Airport

Directions: Take Highway 401 to London and exit at Veteran’s Memorial Parkway (formerly Airport Road). Go north approximately 11 kms, until the Parkways ends at Huron Street. Go east on Huron Street (0.7 km) to the railway crossing – at this point the main road swings north around London International Airport, but keep straight on the smaller paved road, which will come to a dead end after 0.6 km from the railway track.

The Insurance Research Lab for Better Homes is the large blue building on the right. Enter through the gate at the east side of the facility.

FACTS:

The Insurance Research Lab for Better Homes is home to The University of Western Ontario’s ‘Three Little Pigs’ project.
The lab is not a wind tunnel. There is no wind actually blowing through the lab, or at the house built inside the facility.
60 ‘pressure load activators’ create hurricane-force pressure against the house. These pressure boxes include large hoses that are able to suck and blow to simulate the fluctuating force of wind. The pressure is regulated so that each box applies different pressure to simulate turbulent wind coming from different directions and moving across the house. The pressure load actuators were developed specifically for this project and the technology has been patented.
Apart from actually testing a house in a hurricane, these pressure boxes create the most realistic test of how a home would react to such conditions. This kind of testing has never been done before in such a realistic way on a complete house.
The roof of the house will not be completely destroyed; rather, during testing, the roof will move approximately four inches away from the wall. This is a dramatic shift that would essentially be a catastrophic failure and you would, according to researchers be “likely to find your roof on a neighbour’s lawn.” The force of the wind, according to researcher Kopp, is like “turning the house upside down, adding weight to it and shaking it!”
These tests coincide with the third anniversary of Hurricane Katrina.
History: Funded primarily by the Canada Foundation for Innovation and the Ontario Innovation Trust, construction of The Insurance Research Lab for Better Homes began in 2005.

Media contact: Douglas Keddy, Research Communications Coordinator, The University of Western Ontario, 519-661-2111 ext. 87485

Douglas Keddy | EurekAlert!
Further information:
http://www.uwo.ca

Further reports about: Airport Building Insurance Parkway Roof Three Little Pigs hurricane season wind tunnel

More articles from Architecture and Construction:

nachricht Smart buildings through innovative membrane roofs and façades
31.08.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Concrete from wood
05.07.2017 | Schweizerischer Nationalfonds SNF

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>