Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Averting bridge disasters: New technology could save hundreds of lives

29.07.2011
UMD sensors offer instant, affordable warnings

Millions of U.S. drivers cross faulty or obsolete bridges every day, highway statistics show, but it's too costly to fix all these spans or adequately monitor their safety, says a University of Maryland researcher who's developed a new, affordable early warning system.

This wireless technology could avert the kind of bridge collapse that killed 13 and injured 145 along Minneapolis' I-35W on Aug. 1, 2007, he says - and do so at one-one-hundredth the cost of current wired systems.

"Potentially hundreds of lives could be saved," says University of Maryland electrical engineering researcher Mehdi Kalantari. "One of every four U.S. highway bridges has known structural problems or exceeded its intended life-span. Most only get inspected once every one or two years. That's a bad mix."

Kalantari has created tiny wireless sensors that monitor and transmit minute-by-minute data on a bridge's structural integrity. A central computer analyzes the data and instantly warns officials of possible trouble. He plans to scale-up manufacture in the fall.

"If this kind of technology had been available in Minnesota four years ago, there's a good chance the fatal bridge collapse could have been avoided," Kalantari adds. "This new approach makes preventive maintenance affordable - even at a time when budgets are tight. Officials will be able to catch problems early and will have weeks or month to fix a problem."

More than one-in-four U.S. bridges are either structurally deficient or functionally obsolete, according to a 2009 estimate by the U.S. Society of Civil Engineers.

72,000-plus U.S. bridges are listed by the U.S. Department of Transportation as "structurally deficient" and require extra surveillance. 79,000 others are functionally obsolete, exceeding their life-span and carrying loads greater than they were designed to handle.

Kalantari's sensors measure indicators of a bridge's structural health, such as strain, vibration, flexibility, and development of metal cracks. The sensors are small, wireless, rugged, and require practically no maintenance, he says. They are expected to last more than a decade, with each costing about $20. An average-sized highway bridge would need about 500 sensors for a total cost of about $10,000.

"The immediacy, low cost, low energy and compact size add up to a revolution in bridge safety monitoring, providing a heightened level of early-warning capability," Kalantari concludes.

Newer "smart" bridges, including the I-35W replacement in Minneapolis, have embedded wired networks of sensors. But Kalantari says the cost is too high for use on older spans.

"A wired network approach will cost at least 100 times more than a wireless alternative, and that's simply unaffordable given the strain on local, state, and federal budgets," Kalantari estimates.

Current federal requirements call for an on-site, visual inspection of highway bridges once every two to five years, depending the span's condition. Bridges deemed structurally deficient must be inspected once each year.

In its report on the fatal Minneapolis bridge collapse, the National Transportation Safety Board identified a faulty "gusset plate" - a connector essential to the bridge's structural integrity - as a likely cause of the disaster.

The report notes an "inadequate use of technologies for accurately assessing the condition of gusset plates on deck truss bridges." Kalantari expects his technology to fill that need.

TESTING ON MARYLAND BRIDGES

For almost a year, Kalantari has been testing his device in conjunction with the Maryland Department of Transportation, measuring the structural parameters of highway bridges in a real setting. This has enabled him to optimize the device's performance and energy consumption. His updated model is smaller and ten times more energy efficient than its predecessor.

The testing allows him to track the bridge's response to changes in weather conditions and traffic. For example, he's measuring how the metal expands and contracts as the temperature rises and falls. Also, he can compare the metal's response during periods of peak and light loads. He hopes to expand the field testing more broadly in Maryland and to deploy sensors fully across the spans.
Capital Beltway (I-495), Northwest Branch Bridge: Since August 2010, Kalantari has had eight sensors on the Northwest Branch Bridge, a truss span like the one that collapsed in Minneapolis, though smaller. The bridge has proven "safe" in all his tests, so far. "Everything is working the way it's supposed to - both the bridge and my instruments," he reports.

Frederick, Maryland (I-70), Conococheague Creek Bridge: This span is the second provided by Maryland highway officials for Kalantari's test.

HOW THE SYSTEM WORKS

As with conventional technology, the sensors measure variables reflecting the structural integrity of a bridge, such as strain, vibration, tilt, acceleration, deformation and cracking.

Serious problems are more obvious and easier to interpret, and so trip an alarm very quickly. Early-stage problems are more subtle, and it may take up to a few days until the system is confident enough to report a structural integrity issue.

The sensors are less than five millimeters thick and have four thin, flexible layers. The first senses and measures structural parameters; the second stores energy; the third communicates data; and the outer layer harvests energy from ambient light and ambient radio waves.

Kalantari says the sensors offer a significant improvement on existing technology:

No wires, batteries, or dedicated external power source;
Almost no maintenance;
Low cost;
Easy and quick to install;
Suitable for new and existing bridges.
TIMETABLE
Kalantari says he's working in an "emerging market with no widely accepted commercial solution now available." To commercialize his technology, he founded Resensys LLC, a start-up in the University of Maryland's Technology Advancement Program incubator. He expects to scale-up production in September.
MEDIA CONTACTS
Mehdi Kalantari
Research Scientist
Department Electrical and Computer Engineering
301-395-3892 (cell)
mehkalan@umd.edu
Neil Tickner
University of Maryland Public Affairs
301-405-4622
ntickner@umd.edu
Note: August 1 marks the fourth anniversary of Minneapolis' fatal I-35W Bridge collapse.

Photo-ops available at similar suburban Washington, D.C. bridge where new warning sensor technology is being tested

SEE VIDEO OF KALANTARI AT WORK ON ONE OF HIS TEST INTERSTATE BRIDGES: HERE: http://www.youtube.com/watch?v=128SFHGmg4Q

Neil Tickner | EurekAlert!
Further information:
http://www.umd.edu

More articles from Architecture and Construction:

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>