Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Architectural researcher to tell conferees in Germany how 'living roofs' help build better cities

10.06.2014

Hot town, summer in the city — it's nothing new, but ways to handle the heat, humidity, and stormwater haven’t changed much since the invention of the sewer system.

One solution offered by architectural researchers is known as a “green roof” — a roof covered in living, growing plants to soften the effects of heat, flooding, noise, and stormwater runoff.


Five platforms at the the Research and Demonstration Facility aat Virginia Tech in Blacksburg, Virginia, were used to test various depths of “green” roofing. The thickest growth is in the foreground, with unplanted growth material and finally reflective roofing material in the distance.

Elizabeth J. Grant, an assistant professor of architecture and design at Virginia Tech, will present ways for architects to determine the most effective depths of green roofing for stormwater control on Thursday at the International Conference on Building Envelope Systems and Technologies — also known as ICBEST — in Aachen, Germany.

“With growing numbers of people moving into cities, it is crucial to give architects and builders tools to make good decisions about green roofs,” Grant said. “These systems are on the rise not just because they represent a link to the natural world that is scarce in the city, but because they work. Extremes of temperature and rainfall are becoming unpredictable as climates change, and vegetated roofs help us build resilience in a rapidly changing world.”

With Kenneth Black and Jim Jones of the School of Architecture + Design, the team generated equations that can predict the effectiveness of vegetated roof installations to control stormwater runoff relative to temperature, humidity, and frequency of sunlight and rainfall.

Green roofs use the sun to transform water into water vapor, which provides cooling as a byproduct. In the same way, these vegetated roofs reduce stormwater runoff and flow rates, which in turn helps prevent sewers from overflowing and stream banks from eroding.

“Our research should give architects and designers justification that they are helping the environment by incorporating green roofs in their plans,” Grant said. “We are bridging the gap between science and design.”

The researchers built a variety of test platforms with depths of green roofing ranging from about 2.5 inches to 6 inches deep at the Research and Demonstration Facility managed by the College of Architecture and Urban Studies in Blacksburg, Virginia.

Alongside the platforms were a weather station and a rain gauge to measure rainfall, temperature, humidity, wind speed and direction, and solar radiation.

Of 74 rainfall events included in the study, all of the treatment platforms, including the unplanted, growing-medium-only roof, retained significantly more runoff than a white reflective roof membrane with no vegetation or growing medium used for comparison.

Deeper platforms hold more stormwater runoff, but overall green roofs retain about 50 percent of the stormwater compared with about 6 percent for the normal, flat roof.

Light colored roofs or reflective roof surfaces have also been mentioned as solutions to sweltering city temperatures, but recent studies warn that they may merely redistribute heat without reducing it, and they don’t address runoff problems as well as vegetated roofs.

The next step in the research is to analyze the data at five-minute intervals to compare the delays in runoff at the treatment platforms, which is important for understanding sewer-system loads and stream erosion.

Written by John Pastor

http://www.icbest.de

Katie Gehrt | Virginia Tech
Further information:
http://www.vt.edu

Further reports about: Architecture heat humidity rainfall stormwater temperature temperatures

More articles from Architecture and Construction:

nachricht More densely populated urban areas call for more urban quality
28.05.2015 | Schweizerischer Nationalfonds SNF

nachricht Innovative local heating solution in Ludwigsburg
21.05.2015 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>