Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Architectural researcher to tell conferees in Germany how 'living roofs' help build better cities

10.06.2014

Hot town, summer in the city — it's nothing new, but ways to handle the heat, humidity, and stormwater haven’t changed much since the invention of the sewer system.

One solution offered by architectural researchers is known as a “green roof” — a roof covered in living, growing plants to soften the effects of heat, flooding, noise, and stormwater runoff.


Five platforms at the the Research and Demonstration Facility aat Virginia Tech in Blacksburg, Virginia, were used to test various depths of “green” roofing. The thickest growth is in the foreground, with unplanted growth material and finally reflective roofing material in the distance.

Elizabeth J. Grant, an assistant professor of architecture and design at Virginia Tech, will present ways for architects to determine the most effective depths of green roofing for stormwater control on Thursday at the International Conference on Building Envelope Systems and Technologies — also known as ICBEST — in Aachen, Germany.

“With growing numbers of people moving into cities, it is crucial to give architects and builders tools to make good decisions about green roofs,” Grant said. “These systems are on the rise not just because they represent a link to the natural world that is scarce in the city, but because they work. Extremes of temperature and rainfall are becoming unpredictable as climates change, and vegetated roofs help us build resilience in a rapidly changing world.”

With Kenneth Black and Jim Jones of the School of Architecture + Design, the team generated equations that can predict the effectiveness of vegetated roof installations to control stormwater runoff relative to temperature, humidity, and frequency of sunlight and rainfall.

Green roofs use the sun to transform water into water vapor, which provides cooling as a byproduct. In the same way, these vegetated roofs reduce stormwater runoff and flow rates, which in turn helps prevent sewers from overflowing and stream banks from eroding.

“Our research should give architects and designers justification that they are helping the environment by incorporating green roofs in their plans,” Grant said. “We are bridging the gap between science and design.”

The researchers built a variety of test platforms with depths of green roofing ranging from about 2.5 inches to 6 inches deep at the Research and Demonstration Facility managed by the College of Architecture and Urban Studies in Blacksburg, Virginia.

Alongside the platforms were a weather station and a rain gauge to measure rainfall, temperature, humidity, wind speed and direction, and solar radiation.

Of 74 rainfall events included in the study, all of the treatment platforms, including the unplanted, growing-medium-only roof, retained significantly more runoff than a white reflective roof membrane with no vegetation or growing medium used for comparison.

Deeper platforms hold more stormwater runoff, but overall green roofs retain about 50 percent of the stormwater compared with about 6 percent for the normal, flat roof.

Light colored roofs or reflective roof surfaces have also been mentioned as solutions to sweltering city temperatures, but recent studies warn that they may merely redistribute heat without reducing it, and they don’t address runoff problems as well as vegetated roofs.

The next step in the research is to analyze the data at five-minute intervals to compare the delays in runoff at the treatment platforms, which is important for understanding sewer-system loads and stream erosion.

Written by John Pastor

http://www.icbest.de

Katie Gehrt | Virginia Tech
Further information:
http://www.vt.edu

Further reports about: Architecture heat humidity rainfall stormwater temperature temperatures

More articles from Architecture and Construction:

nachricht Smarter window materials can control light and energy
23.07.2015 | University of Texas at Austin

nachricht University of Cincinnati, industry partners develop low-cost, 'tunable' window tintings
11.06.2015 | University of Cincinnati

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Glaciers melt faster than ever

Glacier decline in the first decade of the 21st century has reached a historical record, since the onset of direct observations. Glacier melt is a global phenomenon and will continue even without further climate change. This is shown in the latest study by the World Glacier Monitoring Service under the lead of the University of Zurich, Switzerland.

The World Glacier Monitoring Service, domiciled at the University of Zurich, has compiled worldwide data on glacier changes for more than 120 years. Together...

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Glaciers melt faster than ever

03.08.2015 | Earth Sciences

Tool making and additive technology exhibition: Fraunhofer IPT at Formnext

31.07.2015 | Trade Fair News

First Siemens-built Thameslink train arrives in London

31.07.2015 | Transportation and Logistics

VideoLinks
B2B-VideoLinks
More VideoLinks >>>