Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

400,000 Farmers in Southern Africa Using ‘Fertilizer Trees’ to Improve Food Security

19.10.2011

As World Food Day Puts Focus on Food Crises, Research Shows Potential for Rapid, Radical Transformation on Smallholder Farms

NAIROBI, KENYA (14 October 2011)— On a continent battered by weather extremes, famine and record food prices, new research released today from the World Agroforestry Centre documents an exciting new trend in which hundreds of thousands of poor farmers in Southern Africa are now significantly boosting yields and incomes simply by using fast growing trees and shrubs to naturally fertilize their fields.

The analysis of two decades of work to bring the soil-enriching benefits of so-called “fertilizer trees” to the nutrient-depleted farms of Africa was published in the most recent issue of the International Journal of Agricultural Sustainability.

“In only five African countries, there are now some 400,000 smallholder farmers using fertilizer trees to provide critically needed soil nutrients—and many report major increases in maize yields—which shows that it is possible to rapidly introduce innovations in Africa that can have an immediate impact on food security,” said Oluyede Ajayi, Senior Scientist at the World Agroforestry Centre and the paper’s lead author.

The study focuses on the rapid adoption of fertilizer trees by farmers targeted in research, training and extension programs in Malawi, Tanzania, Mozambique, Zambia and Zimbabwe. In eastern Zambia alone, the study reports the use of fertilizer trees grew from a pilot project in the early 1990s that involved only 12 farmers to adoption by 66,000 farmers as of 2006. In Malawi, there are now 145,000 farmers using fertilizer trees.

In addition, across the region, researchers have documented a doubling of maize yields on farms employing fertilizer trees compared to those that did not, which has dramatically increased both incomes and food security. In Zambia, for example, incomes for farmers using the fertilizer trees averaged from $233 to $327 per hectare, compared to only $130 for unfertilized fields. And the increased yields provided between 57 to 114 extra days of food.

“We also found that when farmers plant these trees, water efficiency improves,” Ajayi said. “Farmers are getting higher yields from the same amount of rainwater. And the trees are helping reduce the run-off and soil erosion that is a key factor behind food production shortfalls in Africa.”

Fertilizer trees enhance soil health by drawing nitrogen from the air and transferring it to the soil through their roots and leaf litter, replenishing exhausted soils with rich sources of organic nutrients. Scientists at the World Agroforestry Centre have been working since the 1980s to identify indigenous tree species, such as a fast growing variety of acacia that can be planted alongside crops to improve soil fertility. Among the many burdens facing African farmers are soils that are among the most depleted in the world. Yet for two-thirds of farmers on the continent, mineral supplements are either too expensive or simply unavailable.

In recent years, the Centre’s work has focused on partnerships, particularly with national agriculture extension programs that can help more smallholder farmers integrate fertilizer trees into their crop production systems. Ajayi said the rapid adoption of the fertilizer tree approach is partly due to the fact that researchers have turned over much of the project design and testing to farmers.

“Initially, these fertilizer tree projects were controlled mostly by researchers,” Ajayi said. “But in the final phases of development, all of the testing in the field was completely designed and fully managed by the farmers themselves.”

Ajayi also credited initiatives that focused on integrating the fertilizer tree approach with national agriculture policies and priorities.

Researchers believe wider use of fertilizer trees in Africa will require a two-track strategy that involves simultaneously engaging policy makers and farmers.

Ajayi cautioned that, while they are a natural way of supplementing the soil, fertilizer trees should not become entangled in the divisive “organic versus inorganic” debate over how to boost to increase crop yields in Africa. It is important to increase the use of both types of nutrient sources in complementary ways. For example, research has shown that coupling fertilizer trees with small doses of mineral fertilizer often results in generating the highest productivity and financial returns.

“We need to provide farmers in Africa with a wide range of soil fertility options and not focus on one type or another as being somehow superior,” he said.

Researchers also say future work should focus on the potential for fertilizer trees to improve yields of high value crops, such as coffee and cocoa.

Paul Stapleton | EurekAlert!
Further information:
http://www.worldagroforestry.org/

More articles from Architecture and Construction:

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>