Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

400,000 Farmers in Southern Africa Using ‘Fertilizer Trees’ to Improve Food Security

19.10.2011

As World Food Day Puts Focus on Food Crises, Research Shows Potential for Rapid, Radical Transformation on Smallholder Farms

NAIROBI, KENYA (14 October 2011)— On a continent battered by weather extremes, famine and record food prices, new research released today from the World Agroforestry Centre documents an exciting new trend in which hundreds of thousands of poor farmers in Southern Africa are now significantly boosting yields and incomes simply by using fast growing trees and shrubs to naturally fertilize their fields.

The analysis of two decades of work to bring the soil-enriching benefits of so-called “fertilizer trees” to the nutrient-depleted farms of Africa was published in the most recent issue of the International Journal of Agricultural Sustainability.

“In only five African countries, there are now some 400,000 smallholder farmers using fertilizer trees to provide critically needed soil nutrients—and many report major increases in maize yields—which shows that it is possible to rapidly introduce innovations in Africa that can have an immediate impact on food security,” said Oluyede Ajayi, Senior Scientist at the World Agroforestry Centre and the paper’s lead author.

The study focuses on the rapid adoption of fertilizer trees by farmers targeted in research, training and extension programs in Malawi, Tanzania, Mozambique, Zambia and Zimbabwe. In eastern Zambia alone, the study reports the use of fertilizer trees grew from a pilot project in the early 1990s that involved only 12 farmers to adoption by 66,000 farmers as of 2006. In Malawi, there are now 145,000 farmers using fertilizer trees.

In addition, across the region, researchers have documented a doubling of maize yields on farms employing fertilizer trees compared to those that did not, which has dramatically increased both incomes and food security. In Zambia, for example, incomes for farmers using the fertilizer trees averaged from $233 to $327 per hectare, compared to only $130 for unfertilized fields. And the increased yields provided between 57 to 114 extra days of food.

“We also found that when farmers plant these trees, water efficiency improves,” Ajayi said. “Farmers are getting higher yields from the same amount of rainwater. And the trees are helping reduce the run-off and soil erosion that is a key factor behind food production shortfalls in Africa.”

Fertilizer trees enhance soil health by drawing nitrogen from the air and transferring it to the soil through their roots and leaf litter, replenishing exhausted soils with rich sources of organic nutrients. Scientists at the World Agroforestry Centre have been working since the 1980s to identify indigenous tree species, such as a fast growing variety of acacia that can be planted alongside crops to improve soil fertility. Among the many burdens facing African farmers are soils that are among the most depleted in the world. Yet for two-thirds of farmers on the continent, mineral supplements are either too expensive or simply unavailable.

In recent years, the Centre’s work has focused on partnerships, particularly with national agriculture extension programs that can help more smallholder farmers integrate fertilizer trees into their crop production systems. Ajayi said the rapid adoption of the fertilizer tree approach is partly due to the fact that researchers have turned over much of the project design and testing to farmers.

“Initially, these fertilizer tree projects were controlled mostly by researchers,” Ajayi said. “But in the final phases of development, all of the testing in the field was completely designed and fully managed by the farmers themselves.”

Ajayi also credited initiatives that focused on integrating the fertilizer tree approach with national agriculture policies and priorities.

Researchers believe wider use of fertilizer trees in Africa will require a two-track strategy that involves simultaneously engaging policy makers and farmers.

Ajayi cautioned that, while they are a natural way of supplementing the soil, fertilizer trees should not become entangled in the divisive “organic versus inorganic” debate over how to boost to increase crop yields in Africa. It is important to increase the use of both types of nutrient sources in complementary ways. For example, research has shown that coupling fertilizer trees with small doses of mineral fertilizer often results in generating the highest productivity and financial returns.

“We need to provide farmers in Africa with a wide range of soil fertility options and not focus on one type or another as being somehow superior,” he said.

Researchers also say future work should focus on the potential for fertilizer trees to improve yields of high value crops, such as coffee and cocoa.

Paul Stapleton | EurekAlert!
Further information:
http://www.worldagroforestry.org/

More articles from Architecture and Construction:

nachricht Modular storage tank for tight spaces
16.03.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Smart homes will “LISTEN” to your voice
17.01.2017 | EML European Media Laboratory GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>