Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


110-foot concrete bridge withstands 8.0 earthquake simulation

Third experiment in University of Nevada, Reno series uses innovative materials and construction

After a succession of eight separate earthquake simulations, a 110-foot long, 200-ton concrete bridge model at the University of Nevada, Reno withstood a powerful jolting, three times the acceleration of the disastrous 1994 magnitude 6.9 Northridge, Calif. earthquake, and survived in good condition.

"This is very satisfying to see how well the design and components worked," Saiid Saiidi, principal investigator for the project and University of Nevada civil engineering professor said after the final test on this bridge Tuesday afternoon. "We estimated bridge failure at 8 inches of deflection, which is a lot, but we had 10 inches of deflection in the support columns and the bridge remained standing and usable, even with considerable internal stresses."

The bridge model is shaken with bidirectional forces to realistically simulate an earthquake. The researchers mimic the Northridge earthquake using recorded data of the actual earthquake. Computer programs direct the movements of the three large hydraulically-controlled shake tables in the University's world-renowned, large-scale structures laboratory.

"We know the bridge would have survived that quake in good condition and still be usable," Saiidi said.

The University of Nevada research team is experimenting with and testing a number of materials and innovations to potentially revolutionize seismic design of future bridges to help protect lives, prevent damage and avoid bridge closure even when there is a strong earthquake.

"We anticipate these designs and components would be used in future bridge and overpass construction," Saiidi said.

The11-foot-high, four-span concrete bridge model was the third experiment in a series of these tests using innovative composite materials and construction to give superior seismic performance for bridges and highway overpasses.

"What is extraordinary about the construction techniques tested with this bridge is the use of glass and carbon fibers to support the bridge, precast columns, segmental columns and special steel pipe-pin connections in a high seismic setting," Saiidi said.

Three video views of the final test:
The test was attended by about 50 engineers and industry representatives, including Caltrans chief of earthquake engineering and several senior bridge engineers from Caltrans and NDOT. About 100 viewers from around the country observed the test live via the Web.

The experiment is funded by a $2 million grant from the National Science Foundation. It is part of a larger multi-university project within the George E. Brown Jr. Network for Earthquake Engineering Simulation (NEES) research program. The Large-Scale Structures Laboratory is a member of NEES, established by the National Science Foundation in 2004. As a NEES Equipment Site, the laboratory is equipped with four, large-scale, high-performance shake tables; the only laboratory in the world of its kind.

Nevada's land-grant university founded in 1874, the University of Nevada, Reno has an enrollment of nearly 17,000 students. The University is home to one the country's largest study-abroad programs and the state's medical school, and offers outreach and education programs in all Nevada counties. For more information, visit

Mike Wolterbeek | EurekAlert!
Further information:

More articles from Architecture and Construction:

nachricht Rock solid: Carbon-reinforced concrete from Augsburg
11.10.2016 | Universität Augsburg

nachricht Heating and cooling with environmental energy
22.09.2016 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Architecture and Construction >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>