Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Zealand breeding program creates new red raspberry variety

02.03.2009
'Moutere' produces early season high-grade berries for fresh market

A horticultural research team from New Zealand and Canada has introduced a new red raspberry cultivar. 'Moutere' is a new floricane fruiting red raspberry (Rubus idaeus L.) created in a planned breeding program at The Horticulture and Food Research Institute of New Zealand Limited (recently renamed The New Zealand Institute of Plant and Food Research Limited (Plant and Food Research).

The name 'Moutere', a Maori word meaning "island", was chosen because the cultivar was selected near the rural area and townships (Upper Moutere and Lower Moutere) adjacent to Motueka, New Zealand.

The new cultivar was featured in the American Society of Horticultural Science's journal HortScience. The research team included Mark Joseph Stephens of Plant and Food Research, Chaim Kempler of the Agriculture and Agri-Food Canada, Pacific Agri-Food Research Centre, and Harvey K. Hall of Shekinah Berries Ltd., Motueka, New Zealand.

Although no large-scale trials of 'Moutere' have been conducted, it performed well in British Columbia, Canada, and in the Nelson region of New Zealand in small-sized research plots over several years. According to the study authors, 'Moutere' should be well-adapted to U.S. hardiness zones 8 to 10.

The new variety is distinguished by high yields of large, uniform size, bright red berries. The fruit is suitable for consumption as early season high-grade fresh berries and is very attractive when packaged for the fresh market.

The scientists note that 'Moutere' will produce high yields of large attractive fruit in fertile soils with good management and sufficient winter chill. The plant adapts well to a wide range of environments and is a useful breeding parent for resistance to Raspberry Bushy Dwarf Virus (RBDV) and the North American raspberry aphid.

The new red raspberry cultivar is the subject of a grant of a U.S. plant patent. For licensee information on 'Moutere', contact the Plant Variety Management Team at wcashmore@hortresearch.co.nz. This e-mail address is being protected from spambots. You need JavaScript enabled to view it .

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht Researchers discover a new link to fight billion-dollar threat to soybean production
14.02.2017 | University of Missouri-Columbia

nachricht Important to maintain a diversity of habitats in the sea
14.02.2017 | University of Gothenburg

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>