Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Winter temperatures play complex role in triggering spring budburst

12.01.2011
Study yields new model that can help managers calculate when plants will burst bud under different climate scenarios

The opening of buds on Douglas-fir trees each spring is the result of a complex interplay between cold and warm temperatures during the winter, scientists with the U.S. Forest Service's Pacific Northwest Research Station have found.

Their research—which is featured in the December issue of Science Findings, a monthly publication of the station—led to the development of a novel model to help managers predict budburst under different scenarios of future climate.

"We take it for granted that buds will open each spring, but, in spite of a lot of research on winter dormancy in plants, we don't really understand how the plants are sensing and remembering temperatures," said Connie Harrington, research forester and the study's lead. "The timing of budburst is crucial because, if it occurs prematurely, the new growth may be killed by subsequent frosts, and if it occurs too late, growth will be reduced by summer drought."

Although scientists have long recognized that some plants require a certain amount of exposure to cold temperatures in the winter and warm temperatures in the spring to initiate the opening of buds, the precise interaction between these chilling and forcing requirements has, until now, been largely unexplored. Harrington and her station colleagues Peter Gould and Brad St Clair addressed this knowledge gap, which has implications for forecasting the effects of climate change on plants, by conducting greenhouse experiments in Washington and Oregon using Douglas-fir, an ecologically and economically important species.

For their experiments, the researchers exposed Douglas-fir seedlings from 59 areas in western Oregon, western Washington, and northern California to a range of winter conditions. After the seedlings finished their first year of growth, they were divided into groups and placed in different locations where their exposure to temperatures varied according to predetermined scenarios. In the spring, the scientists monitored the seedlings and documented the length of time it took for their buds to open.

"We found that, beyond a minimum required level of chilling, many different combinations of temperatures resulted in spring budburst," Harrington said. "Plants exposed to fewer hours of optimal chilling temperatures needed more hours of warmth to burst bud, whereas those exposed to many hours of chilling required fewer hours of warm temperatures for bud burst."

The plants were responding, the researchers found, to both warm and cold temperatures they experienced during the winter and spring. And, they noted that the same temperatures can have different effects depending on how often they occur—a fact that may seem counterintuitive at first. While some winter warming may hasten spring budburst, substantial periods of mid-winter warming, such as is projected under several future climate scenarios, may actually delay, not promote, normal budburst.

Harrington and her colleagues used their findings and research results from other species to develop a novel model that depicts this gradual tradeoff between chilling and forcing temperatures and have verified its accuracy using historical records. They found that the model was fairly accurate in predicting past budburst in Douglas-fir plantations, which indicates it works well with real-world conditions.

Because the model is based on biological relationships between plants and temperature, the researchers expect it will be fairly straightforward to modify for use with other species and for other areas. Managers, for example, could use the model to predict changes in budburst for a wide range of climatic projections and then evaluate the information to determine if selecting a different species to plant or stock from a different seed zone would be a useful management strategy.

To read the December issue of Science Findings online, visit http://www.treesearch.fs.fed.us/pubs/36960.

The PNW Research Station is headquartered in Portland, Oregon. It has 11 laboratories and centers located in Alaska, Oregon, and Washington and about 425 employees.

Yasmeen Sands | EurekAlert!
Further information:
http://www.fs.fed.us

More articles from Agricultural and Forestry Science:

nachricht Alkaline soil, sensible sensor
03.08.2017 | American Society of Agronomy

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>