Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Winter drought stress can delay flowering, prevent fruit loss in orange crops

21.09.2010
Researchers discover technique to improve, extend late-season harvest

Successful mechanical harvesting of perennial fruit crops requires efficient, economical harvesting systems that do not reduce trees' production life or diminish fruit quality.

Most of the world's citrus is now harvested manually, but the use of efficient and lower-cost mechanical harvesting techniques is expected to increase in the next few years, especially in the large citrus plantations in Florida and Brazil. The citrus industry is ramping up efforts to extend the harvest season past June, when the following year's crop becomes large enough to be susceptible to mechanical harvesting; discovering techniques that improve late-season harvesting will give growers better tools to minimize damaging impacts on the next year's fruit yield.

Researchers from the University of Florida's Citrus Research and Education Center published a study in a recent issue of HortScience that determined if winter drought stress could successfully delay flowering and fruit development of immature 'Valencia' sweet oranges to avoid young fruit loss during late-season mechanical harvesting.

The researchers hypothesized that if the Florida 'Valencia' bloom period could be delayed by a few weeks using winter drought stress—without negative effects on the quality of the current season's crop—the "fruitlets" from delayed flowering would be too small to be affected by mechanical harvesting late in the current harvest season, thus safely extending the mechanical harvesting period.

The study was designed by Juan Carlos Melgar, Jill M. Dunlop, L. Gene Albrigo, and James P. Syvertsen and conducted at the Citrus Research and Education Center in Lake Alfred. Beginning in December 2006 and continuing for three consecutive seasons, Tyvek® water-resistive barrier material was used as a rain shield groundcover under 13-year-old-trees. The researchers applied three treatments: drought (no irrigation and covered soil), rain only (no irrigation, no cover), and normal irrigation (rain and no cover). Covers were removed in February or March and normal irrigation and fertilization were resumed.

The drought stress did not affect fruit yield, size, percentage juice, or juice quality of the current crop harvested in May and June relative to continuously irrigated trees. Drought stress delayed flowering by 2 to 4 weeks so that the immature fruit for next season's crop were smaller than on continuously irrigated trees during June, but fruit growth caught up by September. During mechanical harvesting, previously drought-stressed trees lost fewer young fruit than continuously irrigated trees.

"The results showed that winter drought stress effectively delayed flowering and avoided young fruit loss during late-season mechanical harvesting without negative impacts on yield or fruit quality", Melgar noted.

The researchers observed that rain-excluding covers were used as an experimental tool, but that the covers may not be a viable commercial option for growers. They added that natural cover crops may help in inducing drought stress, but are yet to be tested as a management tool.

The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/cgi/content/abstract/45/2/271

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application. More information at ashs.org

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

Further reports about: ASHS Citrus HortScience Horticultural Science drought stress fruit quality

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>