Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Winners and losers in the cotton field

13.03.2013
Indirect side-effects of the cultivation of genetically modified plants
Genetically modified Bt cotton plants contain a poison that protects them from their most significant enemies. As a result, these plants rely less on their own defence system. This benefits other pests, such as aphids. These insights stem from a study supported by the Swiss National Science Foundation (SNSF).

Only ten years ago, genetically modified cotton grew on 12% of all fields – today it is cultivated on over 80% of all cotton fields around the world. Bt cotton contains a gene of Bacillus thuringiensis, a species of soil bacteria. The plant uses it to produce a poison whose effects are fatal to the principal cotton pests – voracious caterpillars. However, certain types of bugs and other pests begin to spread across cotton fields instead, as is the case in China. The decline in the use of chemical pesticides may be partly responsible for this development, but it is probably not the only factor.

Spoiling their appetites
A team of researchers led by Jörg Romeis from the Agroscope Reckenholz-Tänikon Research Station has now identified a biological mechanism that offers an additional explanation for the increase in new pests in Bt cotton fields (*). Cotton plants have a sophisticated defence system. When caterpillars begin to nibble on them, they form defensive substances, so-called terpenoids. This spoils the appetite of not only the caterpillars, but of many other nibblers as well.
The experiments of Romeis and his colleagues have shown that the poison contained in the Bt cotton kills the caterpillars before they cause enough damage for the plant to activate its defence system. Aphids – which are not disturbed by the Bt toxin – were thus able to multiply more strongly on these plants than on conventional cotton plants that used terpenoids to fight the caterpillars.

Also helpful against bugs?
Cotton aphids generally do not cause severe agricultural damage because they succumb to their natural enemies out in the open. His results are therefore not relevant to farming, says Romeis. However, he has for the first time revealed an indirect effect of Bt cotton: the killing of the caterpillars also affects other plant-eating insects because the plants' defence system remains inactive. Romeis now wants to investigate whether this effect is relevant to aphids only or also to the bugs that are creating problems for cotton farmers in China and in other cotton-growing regions of the world.

(*) Steffen Hagenbucher, Felix Wäckers, Felix Wettstein, Dawn Olson, John Ruberson and Jörg Romeis (2013). Pest tradeoffs in technology: Reduced damage by caterpillars in Bt cotton benefits aphids. Proceedings of the Royal Society B online. doi: 10.1098/rspb.2013.0042
(PDF available from the SNSF; e-mail: com@snf.ch)

Contact
Dr. Jörg Romeis
Forschungsanstalt Agroscope Reckenholz-Tänikon ART
Reckenholzstrasse 191
CH-8046 Zürich
Phone: +41 44 377 72 99
E-mail: joerg.romeis@art.admin.ch

Communication division | idw
Further information:
http://www.snsf.ch

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>