Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wine vine: Microscopic photography reveals bacteria destroying grape plant cell wall

15.03.2010
Researchers get up-close look at Pierce's Disease

Like a band of detectives surveying the movement of a criminal, researchers using photographic technology have caught at least one culprit in the act.

In this case, electron microscopy was used to watch a deadly bacteria breakdown cell walls in wine grape plants – an image that previously had not been witnessed. The study will be published in Botany.

"Basically, we've been interested in determining how the bacteria moves," said Dr. B. Greg Cobb, Texas AgriLife Research plant physiologist in College Station. "How do they go from one part of the plant to another?"

The death of wine grape plants from Pierce's Disease is a serious threat to wineries from Texas to California, Cobb noted, and no one has been able to stop or reverse the effects of the bacteria that is injected into the vines by an insect known as the glassy-winged sharpshooter.

The bacteria that causes Pierce's Disease, Xylella fastidiosa, colonizes a plant over a period of time causing it to weaken and die.

"It can be a matter of a few years or more quickly, but plants tend to stop producing before they die, so growers will pull them out of a vineyard," Cobb said.

Cobb and his team of researchers zeroed in on the "matchstick" effect of Pierce's Disease. Plants suffering from the disease drop their leaves, but the petiole - or stem that connects a leaf to the vine - remains, resembling a matchstick. This occurs over the length of the vine no matter where the initial insect injection occurred, Cobb explained.

"We've been looking at that area because we think that is a very important indicator of Pierce's Disease, but it also indicates that something is going on there," he explained.

The xylem of a plant is like a pipe with a spring in it which transports nourishing water to various parts of the plant. The bacteria that causes Pierce's Disease, Xylella fastidiosa, moves through the plant in this way.

"What is happening is that the bacteria is actually able to degrade and move through these very thin parts of the cell wall between the xylem elements," Cobb said. "You can actually see them in the 'pit membranes' that are the borders between adjacent cell walls."

The researchers focused the electron microscope at 100,000th of a millimeter along the pit membrane. The membrane normally blocks larger particles from passing through the pits that are located in the xylem, but high-level photographs show the bacteria breaking down the membrane in order to get through the plant.

Cobb said the study examined syrah and cabernet sauvignon plants because they have been known to be impacted by Pierce's Disease. In the field, they selected leaves that were still viable but had some "scorching" or water stress which indicated the disease was present.

"Then we isolated that very small part at the pit membrane and down the stem or petiole and looked at the xylem there," Cobb said. "To basically see the breakdown of the pit membranes had not been seen before."

Water stress contributes to the death of the Pierce's Disease-infected plant, he added, but it may not be the only factor.

With this information and the photographs to illustrate the process, Cobb's team continues to study the disease in hopes of figuring out what could be done to help an infected plant live longer.

The two-year research effort was supported by the U.S. Department of Agriculture-Animal and Plant Health Inspection Service.

Kathleen Phillips | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht How much drought can a forest take?
20.01.2017 | University of California - Davis

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>