Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wine vine: Microscopic photography reveals bacteria destroying grape plant cell wall

15.03.2010
Researchers get up-close look at Pierce's Disease

Like a band of detectives surveying the movement of a criminal, researchers using photographic technology have caught at least one culprit in the act.

In this case, electron microscopy was used to watch a deadly bacteria breakdown cell walls in wine grape plants – an image that previously had not been witnessed. The study will be published in Botany.

"Basically, we've been interested in determining how the bacteria moves," said Dr. B. Greg Cobb, Texas AgriLife Research plant physiologist in College Station. "How do they go from one part of the plant to another?"

The death of wine grape plants from Pierce's Disease is a serious threat to wineries from Texas to California, Cobb noted, and no one has been able to stop or reverse the effects of the bacteria that is injected into the vines by an insect known as the glassy-winged sharpshooter.

The bacteria that causes Pierce's Disease, Xylella fastidiosa, colonizes a plant over a period of time causing it to weaken and die.

"It can be a matter of a few years or more quickly, but plants tend to stop producing before they die, so growers will pull them out of a vineyard," Cobb said.

Cobb and his team of researchers zeroed in on the "matchstick" effect of Pierce's Disease. Plants suffering from the disease drop their leaves, but the petiole - or stem that connects a leaf to the vine - remains, resembling a matchstick. This occurs over the length of the vine no matter where the initial insect injection occurred, Cobb explained.

"We've been looking at that area because we think that is a very important indicator of Pierce's Disease, but it also indicates that something is going on there," he explained.

The xylem of a plant is like a pipe with a spring in it which transports nourishing water to various parts of the plant. The bacteria that causes Pierce's Disease, Xylella fastidiosa, moves through the plant in this way.

"What is happening is that the bacteria is actually able to degrade and move through these very thin parts of the cell wall between the xylem elements," Cobb said. "You can actually see them in the 'pit membranes' that are the borders between adjacent cell walls."

The researchers focused the electron microscope at 100,000th of a millimeter along the pit membrane. The membrane normally blocks larger particles from passing through the pits that are located in the xylem, but high-level photographs show the bacteria breaking down the membrane in order to get through the plant.

Cobb said the study examined syrah and cabernet sauvignon plants because they have been known to be impacted by Pierce's Disease. In the field, they selected leaves that were still viable but had some "scorching" or water stress which indicated the disease was present.

"Then we isolated that very small part at the pit membrane and down the stem or petiole and looked at the xylem there," Cobb said. "To basically see the breakdown of the pit membranes had not been seen before."

Water stress contributes to the death of the Pierce's Disease-infected plant, he added, but it may not be the only factor.

With this information and the photographs to illustrate the process, Cobb's team continues to study the disease in hopes of figuring out what could be done to help an infected plant live longer.

The two-year research effort was supported by the U.S. Department of Agriculture-Animal and Plant Health Inspection Service.

Kathleen Phillips | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Agricultural and Forestry Science:

nachricht Plasma-zapping process could yield trans fat-free soybean oil product
02.12.2016 | Purdue University

nachricht New findings about the deformed wing virus, a major factor in honey bee colony mortality
11.11.2016 | Veterinärmedizinische Universität Wien

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>