Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No-win situation for agricultural expansion in the Amazon

10.05.2013
The large-scale expansion of agriculture in the Amazon through deforestation will be a no-win scenario, according to a new study.

Published today, 10 May, in IOP Publishing's journal Environmental Research Letters, it shows that deforestation will not only reduce the capacity of the Amazon's natural carbon sink, but will also inflict climate feedbacks that will decrease the productivity of pasture and soybeans.

The researchers used model simulations to assess how the agricultural yield of the Amazon would be affected under two different land-use scenarios: a business-as-usual scenario where recent deforestation trends continue and new protected areas are not created; and a governance scenario which assumes Brazilian environmental legislation is implemented.

They predict that by 2050, a decrease in precipitation caused by deforestation in the Amazon will reduce pasture productivity by 30 percent in the governance scenario and by 34 percent in the business-as-usual scenario.

Furthermore, increasing temperatures could cause a reduction in soybean yield by 24 percent in a governance scenario and by 28 percent under a business-as-usual scenario.

Through a combination of the forest biomass removal itself, and the resulting climate change, which feeds back on the ecosystem productivity, the researchers calculate that biomass on the ground could decline by up to 65 percent for the period 2041-2060

Brazil faces a huge challenge as pressure mounts to convert forestlands to croplands and cattle pasturelands in the Amazon. A fine balance must be struck, however, as the natural ecosystems sustain food production, maintain water and forest resources, regulate climate and air quality, and ameliorate infectious diseases.

Lead author of the study, Dr Leydimere Oliveira, said: "We were initially interested in quantifying the environmental services provided by the Amazon and their replacement by agricultural output.

"We expected to see some kind of compensation or off put, but it was a surprise to us that high levels of deforestation could be a no-win scenario – the loss of environmental services provided by the deforestation may not be offset by an increase in agriculture production."

The researchers, from the Federal University of Viçosa, Federal University of Pampa, Federal University of Minas Gerais and the Woods Hole Research Center, show that the effects of deforestation will be felt most in the eastern Pará and northern Maranhão regions.

Here the local precipitation appears to depend strongly on forests, and changes in land cover would drastically affect the local climate, possibly to a point where agriculture becomes unviable.

"These simulations strongly suggest that the act of deforestation, which is being done to increase agricultural production, may perversely lead to changes in climate that reduce crop and pasture yields" noted Dr. Michael T. Coe, senior scientist at the Woods Hole Research Center and co-author of the study. "In some cases these decreases in yield may be large enough to make agriculture economically unattractive."

From Friday 10 May, the paper can be downloaded from http://iopscience.iop.org/1748-9326/8/2/024021/article

Ian Vorster | EurekAlert!
Further information:
http://www.whrc.org

More articles from Agricultural and Forestry Science:

nachricht New technique reveals details of forest fire recovery
17.05.2018 | DOE/Brookhaven National Laboratory

nachricht Mixed forests: ecologically and economically superior
09.05.2018 | Technische Universität München

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>