Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wetland restoration in the northern Everglades: Watershed potential and nutrient legacies

10.10.2013
To most people, restoration of Florida's Everglades means recovering and protecting the wetlands of south Florida, including Everglades National Park. But what many don't realize is how intimately the fortunes of the southern Everglades are tied to central Florida's Lake Okeechobee and lands even further north.

"The Everglades at the southern tip of Florida—the remains of what was once a vast ecosystem—is interconnected with a large hydrologic system that really begins in Orlando with the northern Everglades," says Patrick Bohlen, a professor of biology at University of Central Florida.

The heart of the system is Lake Okeechobee, he continues, which collects water from the northern Everglades region. This water then used to flow from the lake into the Everglades of the south.

But this natural path of water has been greatly altered by people, leading to a host of environmental problems that state and federal scientists, policy makers, conservationists, and private landowners are now trying to solve. On Monday, Nov. 4, at 2:15 pm, Bohlen will present "Wetland Restoration in the Northern Everglades: Watershed Potential and Nutrient Legacies." His talk is part of the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America Annual Meetings, Nov. 3-6 in Tampa, Florida.

One of the big challenges is nutrient pollution. Land in the northern Everglades is mostly privately owned, and urbanization and agriculture now send runoff laden with fertilizers and other contaminants into Lake Okeechobee. This nutrient-contaminated water would damage the delicate southern Everglades should it reach them. So, much of the water that historically flowed south from Lake Okeechobee is now diverted to estuaries on Florida's east and west coasts.

As a result, the southern Everglades are somewhat starved for water, while the coastal estuaries receive far too much from the lake. Although a connection hasn't been definitively made, heavy flows of nutrient-rich freshwater into the estuaries are suspected in die-offs of eelgrass, manatees and pelicans; huge blooms of algae; and zones of oxygen-starved water, Bohlen says.

The situation reached a crisis this summer, but people have actually been working to restore the northern Everglades ever since problems with Lake Okeechobee first emerged in the 1980s. During his talk, Bohlen will first summarize these issues and then discuss his research on the effectiveness of various restoration practices and policies.

Cattle ranching is the main land use directly north of the lake. So, one restoration practice is to pay ranchers to restore wetlands or create ponds to hold water on their lands. This way, water from the northern Everglades doesn't flow as quickly or in as large amounts into Lake Okeechobee, taking pressure off the lake, its dike, and the estuaries. It may also be cheaper to store water in this manner, rather than in huge public works projects.

Plus, by holding back some water in restored marshes or ponds "in theory, at least, you'll also be holding back some of the nutrients," Bohlen says. Restored wetlands are generally very good, in fact, at removing nitrogen from the system. Phosphorus is trickier. According to Bohlen's research, re-flooding land that was formerly drained and farmed can actually release stored phosphorus into the water, rather than removing it.

"There's a tremendous legacy of accumulated phosphorus in the soils due to past fertilizer use," Bohlen says. "So we have this legacy that we have to live with."

Members of the media receive complimentary registration to the joint ASA, CSSA, SSSA meetings. To register or to arrange a one-on-one interview with Bohlen, please contact Susan Fisk at the email address above by Oct. 25, 2013.

Susan Fisk | EurekAlert!
Further information:
http://www.agronomy.org

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA laser communications to provide Orion faster connections

30.03.2017 | Physics and Astronomy

Reusable carbon nanotubes could be the water filter of the future, says RIT study

30.03.2017 | Studies and Analyses

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>