Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Weed blasting offers new control method for organic farmers

22.01.2016

Weeds are a major scourge for organic growers, who often must invest in multiple control methods to protect crop yields. A relatively new weed control method known as abrasive weeding, or "weed blasting," could give organic growers another tool. The method, recently field-tested at the University of Illinois, is surprisingly effective.

In conjunction with plastic mulch, abrasive weeding reduced final weed biomass by 69 to 97 percent compared to non-weeded control plots, said U of I agroecologist Samuel Wortman.


Handheld weed blasting unit used in the study.

Credit: Samuel Wortman

Abrasive weeding involves blasting weed seedlings with tiny fragments of organic grit, using an air compressor. For the current study, grit was applied through a hand-held siphon-fed sand-blasting unit connected to a gas-powered air compressor, which was hauled down crop rows with a walk-behind tractor.

The study looked at a number of grit sources: walnut shells, granulated maize cob, greensand, and soybean meal. If applied at the right plant growth stage, the force of the abrasive grit severely damages stems and leaves of weed seedlings.

Wortman found no significant differences between the grit types in terms of efficacy. "When it leaves the nozzle, it's at least Mach 1 [767 mph]," Wortman noted. "The stuff comes out so fast, it doesn't really matter what the shape of the particle is." Because ricocheting particles can pose a risk to the applicator, Wortman advises using protective eyewear.

Blasted grit does not discriminate between weed and crop seedlings, which makes it important to use this method in transplanted crops that are substantially larger than weed seedlings at the time of grit application. Although some visible damage occurred on stems and leaves of both tomato and pepper crops, the damage did not affect marketable fruit yield. Studies are ongoing to determine whether abrasions on crop tissues could result in increased susceptibility to disease, but early results show little effect.

Importantly, plots with plastic mulch and one or more blasting treatment achieved the same fruit yields seen in hand-weeded plots, and 33 to 44 percent greater yields than in non-weeded control plots.

An additional benefit of weed blasting is the potential for growers to use organic fertilizers, such as soybean meal, as blasting material. "We expect that abrasive weeding could contribute between 35 and 105 kg nitrogen per hectare [31 - 94 lbs per acre] to soil fertility." The idea that a grower could both fertilize and kill weeds in a single pass is appealing, but it is still unknown whether the fertilizer would be available for plant uptake within critical windows.

According to Wortman's research, weed blasting does affect some weeds more than others. Essentially, the smaller the seedling, the better. Also, seedlings whose growing points are aboveground (annual broadleaf species) are more susceptible to blasting than seedlings whose growing tips are located belowground (grasses and broadleaf perennials). Finally, Wortman noted that the presence of plastic mulch seemed to factor strongly into the equation. Weed blasting alone "is not a silver bullet, but it is an improvement," he said.

The method is now being tested in different horticultural crops, including broccoli and kale, with and without additional weed control methods. Early results suggest that the presence of polyethylene mulch or biodegradable plastic mulch strongly enhances the success of weed blasting, as compared with straw mulch and bare soil. Wortman and his collaborators have also developed a mechanized grit applicator, which they are currently testing.

###

The paper, "Air-propelled abrasive grits reduce weed abundance and increase yields in organic vegetable production," was published in Crop Protection. Funding was provided by the National Institute of Food and Agriculture's Organic Agriculture Research and Extension Initiative. The article can be found online at http://www.sciencedirect.com/science/article/pii/S0261219415300788.

Lauren Quinn | EurekAlert!

Further reports about: Agricultural Environmental Sciences crop organic farmers soybean meal weed

More articles from Agricultural and Forestry Science:

nachricht Energy crop production on conservation lands may not boost greenhouse gases
13.03.2017 | Penn State

nachricht How nature creates forest diversity
07.03.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>