Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Web Tool Successfully Measures Farms’ Water Footprint


A new University of Florida web-based tool worked well during its trial run to measure water consumption at farms in four Southern states, according to a study published this month.

The system measures the so-called “water footprint” of a farm. In the broader sense, water footprints account for the amount of water used to grow or create almost everything we eat, drink, wear or otherwise use.

Researchers at UF’s Institute of Food and Agricultural Sciences introduced their WaterFootprint tool in the March issue of the journal Agricultural Systems, after using it to calculate water consumption at farms in Florida, Georgia, Alabama and Texas.

The WaterFootprint is part of the AgroClimate system, developed by Clyde Fraisse, a UF associate professor of agricultural and biological engineering. AgroClimate is a web resource, aimed primarily at agricultural producers, that includes interactive tools and data for reducing agricultural risks.

WaterFootprint, developed primarily by Daniel Dourte, a research associate in agricultural and biological engineering, estimates water use in crop production across the U.S.
WaterFootprint looks at a farm in a specific year or growing season and gives you its water footprint, Dourte said. With UF’s WaterFootprint system, users provide their location by ZIP code, the crop, planting and harvesting dates, yield, soil type, tillage and water management.

The tool also retrieves historical weather data and uses it to estimate the blue and green water footprints of crop production, Dourte said. Water footprints separate water use into green, which is rainfall; blue, from a freshwater resource; and gray, an accounting of water quality, after it’s been polluted.

Water footprints can be viewed at the farm level or globally.
For instance, if irrigation water is used to grow crops, it is essentially exported, Dourte said.

Once products are shipped overseas, the water used to grow the commodity goes with it, and it may not return for a long time – if ever, Dourte said. That’s a problem if the crop is grown in a region where water is scarce, he said.

But there’s often a tradeoff, he said. Global food trade saves billions of gallons of water each year, as food is exported from humid, temperate places to drier locales that would have used much more water to grow crops, Dourte said.

“The U.S. is a big agricultural producer. Products are exported and along with them, water goes to other countries,” he said.

For example, if you’re growing soybeans, you’re indirectly sending the water that was used to grow the crop. That amounts to about 270 gallons per pound of soybeans, Dourte said.
In addition to soybeans, coffee beans and shirts, if made from cotton, consume lots of water from the growing process to processing to shipping – with most of that water consumption resulting from evaporation and transpiration during crop growth, he said. But understanding the type of water resource being consumed, whether it’s from rainfall or irrigation, makes all the difference in assessing water resource sustainability.
Dourte co-authored the study with Fraisse and Oxana Uryasev, a UF research associate in agricultural and biological engineering.

The WaterFootprint tool can help not just growers, but world water managers as well, he said.

“We think this farm-specific, time-specific water footprinting tool is a unique resource that could be used by resource managers and educators to consider water resource sustainability in the context of agricultural production,” Dourte said. “We usually think of water management locally and regionally. But when you’re accounting for the water footprint of agricultural products, it allows you to see the global nature of that water.”

UF’s WaterFootprint calculator can be found at

Brad Buck | newswise

Further reports about: Agricultural Farms Footprint crop crops difference grow rainfall soybeans

More articles from Agricultural and Forestry Science:

nachricht Harnessing a peptide holds promise for increasing crop yields without more fertilizer
25.11.2015 | University of Massachusetts at Amherst

nachricht Study shows how crop prices and climate variables affect yield and acreage
18.11.2015 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Using sphere packing models to explain the structure of forests

26.11.2015 | Ecology, The Environment and Conservation

Dimensionality transition in a newly created material

26.11.2015 | Materials Sciences

Revealing glacier flow with animated satellite images

26.11.2015 | Earth Sciences

More VideoLinks >>>