Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Web Tool Successfully Measures Farms’ Water Footprint

21.03.2014

A new University of Florida web-based tool worked well during its trial run to measure water consumption at farms in four Southern states, according to a study published this month.

The system measures the so-called “water footprint” of a farm. In the broader sense, water footprints account for the amount of water used to grow or create almost everything we eat, drink, wear or otherwise use.

Researchers at UF’s Institute of Food and Agricultural Sciences introduced their WaterFootprint tool in the March issue of the journal Agricultural Systems, after using it to calculate water consumption at farms in Florida, Georgia, Alabama and Texas.

The WaterFootprint is part of the AgroClimate system, developed by Clyde Fraisse, a UF associate professor of agricultural and biological engineering. AgroClimate is a web resource, aimed primarily at agricultural producers, that includes interactive tools and data for reducing agricultural risks.

WaterFootprint, developed primarily by Daniel Dourte, a research associate in agricultural and biological engineering, estimates water use in crop production across the U.S.
WaterFootprint looks at a farm in a specific year or growing season and gives you its water footprint, Dourte said. With UF’s WaterFootprint system, users provide their location by ZIP code, the crop, planting and harvesting dates, yield, soil type, tillage and water management.

The tool also retrieves historical weather data and uses it to estimate the blue and green water footprints of crop production, Dourte said. Water footprints separate water use into green, which is rainfall; blue, from a freshwater resource; and gray, an accounting of water quality, after it’s been polluted.

Water footprints can be viewed at the farm level or globally.
For instance, if irrigation water is used to grow crops, it is essentially exported, Dourte said.

Once products are shipped overseas, the water used to grow the commodity goes with it, and it may not return for a long time – if ever, Dourte said. That’s a problem if the crop is grown in a region where water is scarce, he said.

But there’s often a tradeoff, he said. Global food trade saves billions of gallons of water each year, as food is exported from humid, temperate places to drier locales that would have used much more water to grow crops, Dourte said.

“The U.S. is a big agricultural producer. Products are exported and along with them, water goes to other countries,” he said.

For example, if you’re growing soybeans, you’re indirectly sending the water that was used to grow the crop. That amounts to about 270 gallons per pound of soybeans, Dourte said.
In addition to soybeans, coffee beans and shirts, if made from cotton, consume lots of water from the growing process to processing to shipping – with most of that water consumption resulting from evaporation and transpiration during crop growth, he said. But understanding the type of water resource being consumed, whether it’s from rainfall or irrigation, makes all the difference in assessing water resource sustainability.
Dourte co-authored the study with Fraisse and Oxana Uryasev, a UF research associate in agricultural and biological engineering.

The WaterFootprint tool can help not just growers, but world water managers as well, he said.

“We think this farm-specific, time-specific water footprinting tool is a unique resource that could be used by resource managers and educators to consider water resource sustainability in the context of agricultural production,” Dourte said. “We usually think of water management locally and regionally. But when you’re accounting for the water footprint of agricultural products, it allows you to see the global nature of that water.”


UF’s WaterFootprint calculator can be found at http://agroclimate.org/tools/Water-Footprint/.

Brad Buck | newswise

Further reports about: Agricultural Farms Footprint crop crops difference grow rainfall soybeans

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>