Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Web Tool Successfully Measures Farms’ Water Footprint

21.03.2014

A new University of Florida web-based tool worked well during its trial run to measure water consumption at farms in four Southern states, according to a study published this month.

The system measures the so-called “water footprint” of a farm. In the broader sense, water footprints account for the amount of water used to grow or create almost everything we eat, drink, wear or otherwise use.

Researchers at UF’s Institute of Food and Agricultural Sciences introduced their WaterFootprint tool in the March issue of the journal Agricultural Systems, after using it to calculate water consumption at farms in Florida, Georgia, Alabama and Texas.

The WaterFootprint is part of the AgroClimate system, developed by Clyde Fraisse, a UF associate professor of agricultural and biological engineering. AgroClimate is a web resource, aimed primarily at agricultural producers, that includes interactive tools and data for reducing agricultural risks.

WaterFootprint, developed primarily by Daniel Dourte, a research associate in agricultural and biological engineering, estimates water use in crop production across the U.S.
WaterFootprint looks at a farm in a specific year or growing season and gives you its water footprint, Dourte said. With UF’s WaterFootprint system, users provide their location by ZIP code, the crop, planting and harvesting dates, yield, soil type, tillage and water management.

The tool also retrieves historical weather data and uses it to estimate the blue and green water footprints of crop production, Dourte said. Water footprints separate water use into green, which is rainfall; blue, from a freshwater resource; and gray, an accounting of water quality, after it’s been polluted.

Water footprints can be viewed at the farm level or globally.
For instance, if irrigation water is used to grow crops, it is essentially exported, Dourte said.

Once products are shipped overseas, the water used to grow the commodity goes with it, and it may not return for a long time – if ever, Dourte said. That’s a problem if the crop is grown in a region where water is scarce, he said.

But there’s often a tradeoff, he said. Global food trade saves billions of gallons of water each year, as food is exported from humid, temperate places to drier locales that would have used much more water to grow crops, Dourte said.

“The U.S. is a big agricultural producer. Products are exported and along with them, water goes to other countries,” he said.

For example, if you’re growing soybeans, you’re indirectly sending the water that was used to grow the crop. That amounts to about 270 gallons per pound of soybeans, Dourte said.
In addition to soybeans, coffee beans and shirts, if made from cotton, consume lots of water from the growing process to processing to shipping – with most of that water consumption resulting from evaporation and transpiration during crop growth, he said. But understanding the type of water resource being consumed, whether it’s from rainfall or irrigation, makes all the difference in assessing water resource sustainability.
Dourte co-authored the study with Fraisse and Oxana Uryasev, a UF research associate in agricultural and biological engineering.

The WaterFootprint tool can help not just growers, but world water managers as well, he said.

“We think this farm-specific, time-specific water footprinting tool is a unique resource that could be used by resource managers and educators to consider water resource sustainability in the context of agricultural production,” Dourte said. “We usually think of water management locally and regionally. But when you’re accounting for the water footprint of agricultural products, it allows you to see the global nature of that water.”


UF’s WaterFootprint calculator can be found at http://agroclimate.org/tools/Water-Footprint/.

Brad Buck | newswise

Further reports about: Agricultural Farms Footprint crop crops difference grow rainfall soybeans

More articles from Agricultural and Forestry Science:

nachricht Microjet generator for highly viscous fluids
13.02.2018 | Tokyo University of Agriculture and Technology

nachricht Sweet route to greater yields
08.02.2018 | Rothamsted Research

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>