Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Watermelon's hidden killer

Researchers seek disease-resistant cultivars to sustain watermelon crop production

Watermelon vine decline (WVD) is a new and emerging disease that has created devastating economic losses for watermelon producers in Florida.

Caused by the whitefly-transmitted squash vein yellowing virus (SqVYV), the disease created monetary losses estimated at $60 to $70 million in Florida during the 2004 growing season. The virus has become endemic in Florida and has appeared to varying degrees every season since it was first observed.

Symptoms of WVD typically occur at or just before harvest, when the vines rapidly collapse. Although affected fruit can appear healthy, rind necrosis and flesh degradation are often evident when fruits are cut, dramatically limiting marketability. The disease progresses rapidly; in some fields vine decline increased from 10% affected plants to greater than 80% within a week. In other cases, entire watermelon fields were lost to WVD. Clearly, the healthy and popular watermelon is under siege from the WVD plague.

Responding to producers' concerns, scientists recently identified the cause of WVD and are seeking ways to control the plague. Chandrasekar S. Kousik and colleagues at the U.S. Department of Agriculture–Agricultural Research Service (ARS) and SWFREC, University of Florida, published the results of a research study of WVD in a recent issue of the ASHS journal HortScience. "In this study, we presented results of greenhouse and field evaluations of U.S. plant introductions for resistance to SqVYV", explained Kousik.

Although whitefly management can significantly reduce the population of this SQVYV vector, complete control is not possible. Thus, the search for long-term and sustainable strategies to manage SqVYV remains important. Development of watermelon cultivars resistant to either SqVYV or its whitefly vector is a promising alternative.

Of the 218 plant introductions (PI) evaluated in the study, none were completely immune, but several PI showed varying levels of resistance and were further evaluated in greenhouse and field trials. "Our studies indicated that these PI could significantly slow down disease development over time compared with the susceptible cultivars, but also indicated that, under extreme circumstances, the resistance offered by some of the genes may not be enough to manage the disease," Kousik said.

The identification of potential sources of partial resistance to SqVYV suggests that watermelon germplasm with moderate resistance can be developed for breeding programs. The scientists suggest that even when some of these resistant genes are moved into commercial cultivars, an integrated approach that includes the use of reflective mulch, application of pesticides to manage whitefly populations, and weed/cucurbit crop volunteer control, will be needed to fully manage WVD.

The complete study and abstract are available on the ASHS Hortscience electronic journal web site:

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application.

Michael W. Neff | EurekAlert!
Further information:

More articles from Agricultural and Forestry Science:

nachricht Forest Management Yields Higher Productivity through Biodiversity
14.10.2016 | Technische Universität München

nachricht Farming with forests
23.09.2016 | University of Illinois College of Agricultural, Consumer and Environmental Sciences (ACES)

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>