Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Watermelon's hidden killer

08.09.2009
Researchers seek disease-resistant cultivars to sustain watermelon crop production

Watermelon vine decline (WVD) is a new and emerging disease that has created devastating economic losses for watermelon producers in Florida.

Caused by the whitefly-transmitted squash vein yellowing virus (SqVYV), the disease created monetary losses estimated at $60 to $70 million in Florida during the 2004 growing season. The virus has become endemic in Florida and has appeared to varying degrees every season since it was first observed.

Symptoms of WVD typically occur at or just before harvest, when the vines rapidly collapse. Although affected fruit can appear healthy, rind necrosis and flesh degradation are often evident when fruits are cut, dramatically limiting marketability. The disease progresses rapidly; in some fields vine decline increased from 10% affected plants to greater than 80% within a week. In other cases, entire watermelon fields were lost to WVD. Clearly, the healthy and popular watermelon is under siege from the WVD plague.

Responding to producers' concerns, scientists recently identified the cause of WVD and are seeking ways to control the plague. Chandrasekar S. Kousik and colleagues at the U.S. Department of Agriculture–Agricultural Research Service (ARS) and SWFREC, University of Florida, published the results of a research study of WVD in a recent issue of the ASHS journal HortScience. "In this study, we presented results of greenhouse and field evaluations of U.S. plant introductions for resistance to SqVYV", explained Kousik.

Although whitefly management can significantly reduce the population of this SQVYV vector, complete control is not possible. Thus, the search for long-term and sustainable strategies to manage SqVYV remains important. Development of watermelon cultivars resistant to either SqVYV or its whitefly vector is a promising alternative.

Of the 218 plant introductions (PI) evaluated in the study, none were completely immune, but several PI showed varying levels of resistance and were further evaluated in greenhouse and field trials. "Our studies indicated that these PI could significantly slow down disease development over time compared with the susceptible cultivars, but also indicated that, under extreme circumstances, the resistance offered by some of the genes may not be enough to manage the disease," Kousik said.

The identification of potential sources of partial resistance to SqVYV suggests that watermelon germplasm with moderate resistance can be developed for breeding programs. The scientists suggest that even when some of these resistant genes are moved into commercial cultivars, an integrated approach that includes the use of reflective mulch, application of pesticides to manage whitefly populations, and weed/cucurbit crop volunteer control, will be needed to fully manage WVD.

The complete study and abstract are available on the ASHS Hortscience electronic journal web site: http://hortsci.ashspublications.org/cgi/content/abstract/44/2/256

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application.

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

nachricht Unusual soybean coloration sheds a light on gene silencing
20.06.2017 | University of Illinois College of Agricultural, Consumer and Environmental Sciences

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>