Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Well-watered citrus tested in cold-acclimating temperatures

03.02.2014
Findings could change traditional citrus winter irrigation strategies

Commercial citrus growers are often challenged by environmental conditions in winter, including low seasonal rainfall that is typical in many citrus growing regions.

Growers must rely on irrigation to sustain citrus crops through dry winters, so understanding how to determine citrus irrigation needs is critical for successful operations.

Authors of a study published in HortScience noted that current methods used to determine moisture needs for citrus are limited, in that they do not account for effects of cold acclimation on water requirements.

"Evidence suggests that at least some changes in plant water deficits occur as a result of cold temperatures and not dry soil," noted Robert Ebel, lead author of the study. "Changes in citrus water relations during cold acclimation and independent of soil moisture content are not well understood. Our study was conducted to characterize changes in plant relations of citrus plants with soil moisture carefully maintained at high levels to minimize drought stress."

Ebel and his colleagues conducted two experiments--the first in Immokalee, Florida, using potted sweet orange, and the second in Auburn, Alabama, using Satsuma mandarin trees. The citrus plants were exposed to progressively lower, non-freezing temperatures for 9 weeks. During the experiments trees were watered twice daily--three times on the days data were collected--to minimize drought stress.

Results of the experiments showed that soil moisture was higher for plants in the cold compared to plants in the warm chamber, and results showed that cold temperatures promoted stomatal closure, higher root resistance, lower stem water potential, lower transpiration, and lower stem water potential. Leaf relative water content was not different for cold-acclimated trees compared with the control trees. The key to minimizing drought stress, the scientists found, was carefully maintaining high soil moisture contents throughout the experiments, especially on the days that the measurements were performed.

"Our modern understanding of plant water relations has mainly evolved from studying growing plants at warm temperatures and in soils of varying moisture contents," Ebel explained. "However, this study demonstrates that those relationships are not consistent for citrus trees exposed to cold-acclimating temperatures."

The authors added that the study findings could have implications for commercial citrus growers who currently use traditional measures of determining irrigation scheduling during winter months.

The complete study and abstract are available on the ASHS HortScience electronic journal web site: http://hortsci.ashspublications.org/content/48/10/1309.abstract

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application.

Mike W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Agricultural and Forestry Science:

nachricht On flexibility of agri-businesses: Are small- or large-scale farms more flexible?
17.10.2014 | Leibniz-Institut für Agrarentwicklung in Transformationsökonomien (IAMO)

nachricht Plant communities produce greater yield than monocultures
16.10.2014 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

Battery Conference April 2015 in Aachen

16.10.2014 | Event News

Experts discuss new developments in the field of stem cell research and cell therapy

10.10.2014 | Event News

Zoonoses: Global collaboration is more important than ever

07.10.2014 | Event News

 
Latest News

Exploring X-Ray phase tomography with synchrotron radiation

21.10.2014 | Medical Engineering

World record in data transmission with smart circuits

21.10.2014 | Information Technology

Scientists restore hearing in noise-deafened mice, pointing way to new therapies

21.10.2014 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>