Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warming Climate Has Consequences for Michigan's Forests

14.04.2014

New report describes climate change risks for northern Michigan forests

In the last 100 years, Michigan has become warmer, with more rain coming through heavy downpours. Climate models suggest that the state will continue to warm and variability in precipitation patterns will increase, which will have consequences for the state’s forests. A new U.S. Forest Service report describes the potential risks and opportunities of climate change for forests in the eastern Upper Peninsula and northern Lower Peninsula.

More than 30 scientists and forest managers contributed to “Michigan Forest Ecosystem Vulnerability Assessment and Synthesis.” The study is part of the Northwoods Climate Change Response Framework, a collaboration of federal, state, academic and private partners led by the Forest Service’s Northern Institute of Applied Climate Science (NIACS). The report was published by the U.S. Forest Service’s Northern Research Station and is available online at: http://www.nrs.fs.fed.us/pubs/45688.

“Climate change information is often presented at scales that are hard to digest,” said Stephen Handler, the lead author for the vulnerability assessment. “This report is designed to give forest managers in Michigan the best possible science on effects of climate change for our particular forest ecosystems, so they can make climate-informed decisions about management today.” 

The assessment evaluates the vulnerability of forest ecosystems within a 16.6-million-acre area in Michigan’s eastern Upper Peninsula and northern Lower Peninsula, about 70 percent of the state’s forested land cover. Topics covered include information on the contemporary landscape, past climate trends, and a range of projected future climates.

Climate impact models project a decline in northern species such as balsam fir, black spruce, white spruce, tamarack, jack pine, northern white-cedar, and paper birch. Southern tree species near their northern range limits may fare better. Species that may become more widespread include American basswood, black cherry, green ash, white ash, and white oak. Climate change is also expected to intensify several stresses that forests already face, such as damaging insect pests and diseases, drought, and wildfire.

While climate models vary on the degree of change and the regions where it will occur, by the end of the 21st century, northern Michigan is projected to experience a climate that is hotter with more variable precipitation, more moisture stress towards the end of the growing season, and less characteristic winter weather. In addition to conditions becoming less favorable for northern forest species and conditions improving for southern species, the vulnerability assessment finds:

  • Soil moisture patterns will change, with drier soil conditions later in the growing season.
  • Low-diversity systems are at greater risk.
  • Tree species and forest types that are better able tolerate disturbances such as wildfires, floods and pest outbreaks may be favored.

In the past 100 years, the mean annual temperature across the area studied in the vulnerability assessment increased 1.7 degrees Fahrenheit. From 1900 to 2011, mean annual precipitation increased by 4.9 inches across the assessment area and intense precipitation events became more frequent. In Michigan, there was a 180-percent increase in rainstorms of 3 inches or more between 1960 and 2011.

“Confronting the challenge of climate change presents opportunities for foresters and other decision-makers to plan ahead, manage for resilient landscapes, and ensure that the benefits that forests provide are sustained into the future,” said Michael T. Rains, Director of the Northern Research Station and the Forest Products Laboratory. “Forest Service science is delivering tools and data that will help managers in Michigan and throughout the nation meet this challenge.”

###

The Northern Institute of Applied Climate Science (NIACS) is a collaborative effort by the Forest Service, Michigan Technological University, the Trust for Public Land, and the National Council for Air and Stream Improvement to provide information on managing forests for climate change adaptation, enhanced carbon sequestration, and sustainable production of bioenergy and materials. As a regional, multi-institutional entity, NIACS builds partnerships, facilitates research, and synthesizes information to bridge the gap between carbon and climate science research and the information and management needs of land owners and managers, policymakers, and members of the public.

The mission of the U.S. Forest Service is to sustain the health, diversity, and productivity of the nation’s forests and grasslands to meet the needs of present and future generations. The agency has either a direct or indirect role in stewardship of about 80 percent of our nation’s forests, amounting to 850 million acres including 100 million acres of urban forests gracing the nation’s cities, where 80 percent of Americans live. The mission of the Forest Service’s Northern Research Station is to improve people’s lives and help sustain the natural resources in the Northeast and Midwest through leading-edge science and effective information delivery.

Jane Hodgins | Eurek Alert!
Further information:
http://www.nrs.fs.fed.us/news/release/Mi-EVAS

Further reports about: Climate Consequences Warming bioenergy ecosystems forests productivity species

More articles from Agricultural and Forestry Science:

nachricht Mulching plus remediation corrects contaminated lawns
29.07.2016 | American Society for Horticultural Science

nachricht Planting time, flurprimidol treatments recommended for Lachenalia
29.07.2016 | American Society for Horticultural Science

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

 
Latest News

Vortex laser offers hope for Moore's Law

29.07.2016 | Power and Electrical Engineering

Novel 'repair system' discovered in algae may yield new tools for biotechnology

29.07.2016 | Life Sciences

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>