Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New virus threatens High Plains wheat crop

26.08.2008
Early identification could save producers millions

Triticum mosaic virus poses a new threat to Texas wheat, according to Texas AgriLife Research scientists in Amarillo.

The disease was discovered in 2006 by Dr. Dallas Seifers, a Kansas State University researcher, said Jacob Price, AgriLife Research associate researcher.

Price is working with Dr. Charlie Rush, AgriLife Research plant pathologist, and Dr. Ron French, Texas AgriLife Extension Service plant pathologist, on a variety of studies to determine how big of a role it plays in the disease pressure put on area wheat.

The virus is difficult to detect and contain because it is carried by the same mite and exhibits many of the same symptoms as several other diseases already attacking wheat, Price said. It is in the same family of diseases as wheat streak mosaic.

Triticum mosaic virus is carried by the wheat curl mite, he said, which is the same vector that spreads/transmits wheat streak mosaic virus and High Plains virus.

Symptoms of each of the diseases are generally yellowing and stunted plants, Price said. While they all look the same, he said he is studying yield reduction, root development and water uptake to see if they vary between the diseases.

"Right now, there's not much you can do about the vector, so it is all a matter of management," he said. That includes both prevention and reduction of inputs once a field is infected.

Destroying volunteer wheat and reducing natural prairie grasses around wheat fields are the key control methods at this time, Price said. This is especially important for dryland producers who plant early, because the grasses act as a "green bridge" to the wheat.

"The wheat curl mite is found on volunteer wheat and many different grasses, and is blown in the air by winds," he said.

Also, because the symptoms of all these viruses are indistinguishable in the field, producers will need to get any sick wheat tested, Price said.

"Bring it to us or mail it to us," he said. If a sample is mailed, it needs to be packed with a cold pack. Sample submission forms can be found at http://amarillo.tamu.edu/programs/plantpathtce .

Price said it is hard to know how much yield loss has been caused by the triticum mosaic virus alone, because no one knew it existed and therefor did not test for it until last year's crop.

From March 14-June 6, Price received 309 wheat samples. Of the samples, he said, 72 percent tested positive for wheat streak mosaic, 51 percent for triticum mosaic virus, 34 percent for High Plains virus and 14 percent for barley yellow dwarf virus.

"Very rarely did you find triticum without wheat streak mosaic," Price said.

Of the samples containing triticum mosaic virus, he said 47 percent also had wheat streak mosaic and 4 percent also had High Plains virus, but the other 49 percent had all three viruses.

Price worked to find out how widespread the triticum virus was and found it throughout the entire west side of the Texas Panhandle.

"I really need to survey everywhere I can this year," he said. He wants to try to determine where the diseases cross, transmissibility by vectors, host ranges such as native grasses and conservation reserve program grasses, yield loss due to single and dual infections and distribution for multiple viruses.

In a previous study, Price has determined wheat streak mosaic virus reduces water uptake. With early diagnosis of the problem and thus irrigation reduction, a producer with a 540-acre center pivot can eliminate two irrigations totaling 4 inches, at $11 per thousand cubic feet, and save approximately $24,000, he said.

"In calculating the counties with wheat acreage infected in the northern Panhandle, early diagnosis could save as much as $9 million for producers by eliminating wasted irrigations," he said. "We weren't testing for triticum at that time, so it is also a factor to be investigated."

Price said they are using satellite imagery early in the season to identify suspect fields and then will go out and test the field.

"We have the potential to save producers billions of dollars in wasted irrigation and fertilizer costs," he said.

While some detection of the disease can be made during warm falls and in early planted wheat, the typical time it will start showing up is during February and March when things start greening up and coming out of dormancy, Price said.

"The main time people irrigate in this area is in the late spring and summer during grain fill and heading," he said. "We want to catch it before then, if not in the fall."

Dr. Charlie Rush | EurekAlert!
Further information:
http://www.tamu.edu

Further reports about: High Plains wheat crop Triticum mosaic virus

More articles from Agricultural and Forestry Science:

nachricht New 3-D model predicts best planting practices for farmers
26.06.2017 | Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign

nachricht Fighting a destructive crop disease with mathematics
21.06.2017 | University of Cambridge

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>