Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viral Life Cycle of Malignant Catarrhal Fever Explained

06.04.2010
The mysterious life cycle of a sheep virus that causes malignant catarrhal fever (MCF) has been discovered by Agricultural Research Service (ARS) scientists and their university collaborators—the first step in developing a vaccine against the disease.

Microbiologist Hong Li and veterinary medical officer Naomi Taus at the ARS Animal Diseases Research Unit in Pullman, Wash., collaborated on the research with Lindsay Oaks at Washington State University and Donal O'Toole at the University of Wyoming.

MCF, a viral infection that is a leading cause of disease in American bison, is usually transmitted from sheep to bison and cattle. Vaccine development has been stymied because the virus won't grow in cell culture.

The ARS scientists and their university colleagues have shown that the virus undergoes several changes inside the animal's body, targeting specific cell types at different stages of its own life cycle. This process is called "cell tropism switching."

The viral replication in sheep can be divided into three stages: entry, maintenance, and shedding. The virus enters the sheep through its nasal passages and reaches the lungs, where it replicates. Replication in the sheep lung is required for the virus to change its cell tropism for the next stage: the infection of lymphocytes, a type of immune cell.

During this maintenance stage, the virus stays in the lymphocytes that circulate through the whole body, with little replication. This type of infection is referred to as a "latent infection." During the shedding stage, the virus reactivates from the infected lymphocytes and targets specific cells in the nasal area to complete its replication. The virus is then shed through the sheep's nasal secretions.

Now that they understand these viral changes, scientists can begin to find the right cell types to grow the virus in cell culture, according to Li.

Read more about this research in the April 2010 issue of Agricultural Research magazine.

ARS is the principal intramural scientific research agency of the U.S. Department of Agriculture (USDA). The research supports the USDA priority of promoting international food security.

Sharon Durham | EurekAlert!
Further information:
http://www.ars.usda.gov

More articles from Agricultural and Forestry Science:

nachricht Six-legged livestock -- sustainable food production
11.05.2017 | Faculty of Science - University of Copenhagen

nachricht Elephant Herpes: Super-Shedders Endanger Young Animals
04.05.2017 | Universität Zürich

All articles from Agricultural and Forestry Science >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Information integration and artificial intelligence for better diagnosis and therapy decisions

24.05.2017 | Information Technology

CRTD receives 1.56 Mill. Euro BMBF-funding for retinal disease research

24.05.2017 | Awards Funding

Devils Hole: Ancient Traces of Climate History

24.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>